材料科学
氧化还原
阴极
电化学
尖晶石
氧气
纳米结构
化学物理
渗透(认知心理学)
渗流阈值
氧化物
纳米技术
物理化学
电阻率和电导率
电极
化学
物理
冶金
有机化学
神经科学
量子力学
生物
作者
Yunshan Jiang,Fu‐Da Yu,Ke Wang,Liang Deng,Yang Xia,Xin‐yu Li,Lan‐Fang Que,Nian Zhang,Lei Zhao,Zhen‐Bo Wang
标识
DOI:10.1002/adfm.202213615
摘要
Abstract Disordered rocksalt cathodes have shown attractive electrochemical performance via oxygen redox, but are limited by a necessary Li‐excess level above the percolation threshold (x > 1.09 in Li x TM 2‐x O 2 , TM = transition metals) to obtain electrochemical activity. However, a relatively low‐Li content is essential to alleviate excessive oxygen charge compensation in rocksalt oxides. Herein, taking the homogeneous Li 2 MnO 3 and LiMn 2 O 4 as the starting point, disordered rocksalt‐like cathodes are prepared with initial Li‐deficient nanostructures, cation vacancies, and partial spinel‐type structures that provide a solution for the acquisition of fast Li + percolation channels under Li‐deficient condition. As a result, the prepared sample exhibits high initial discharge capacity (363 mAh g −1 ) and energy density (1081 Wh kg −1 ). Advanced spectroscopy and in situ measurements observe highly reversible charge compensation during electrochemical process and assign coupled Mn‐ and O‐related redox contribution. Theoretical calculations also suggest the novel and chemical reversible trapped molecular O 2 model in the rocksalt structure with vacancies, demonstrating a dual role of Li‐deficient structure in promoting cationic oxidation and extending reversible oxygen redox boundary. This work is expected to breakthrough the existing ideas of oxygen oxidation and opens up a higher degree of freedom in the design of disordered rocksalt structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI