A Novel Routing Control Method Using Federated Learning in Large-Scale Wireless Mesh Networks

计算机科学 计算机网络 动态源路由 分布式计算 多路径路由 静态路由 链路状态路由协议 无线路由协议 基于策略的路由 无线网状网络 地理路由 布线(电子设计自动化) 路由协议 无线 机器学习 无线网络 电信
作者
Yoshihiko Watanabe,Yuichi Kawamoto,Nei Kato
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:22 (12): 9291-9300 被引量:9
标识
DOI:10.1109/twc.2023.3269785
摘要

Currently, the volume of communication by mobile terminals are increasing owing to 5G and other technologies. A robust network and appropriate routing control methods are requied to transmit information in unstable wireless communication environments and avoid congestion. Therefore, in recent years, numerous studies have been conducted on wireless mesh networks (WMNs), which provide a fault-tolerant communication environment by securing multiple communication paths and whose topology can be freely configured and extended. Additionally, machine learning routing is attracting attention as a new routing method for wireless communication environments. However, when performing machine learning on a large WMN, the learning time increases and rapid routing control may be impossible. In this study, we apply federated learning to machine learning and propose a machine-learning-based routing method that can be applied to large-scale WMNs. Furthermore, experimental results demonstrate the effectiveness of the proposed method in various environments: congestion avoidance is achieved in a large-scale WMN by machine-learning routing using federated learning. This study is expected to serve as a basis for significant progress in the realization of large-scale WMNs as wireless communication infrastructure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助hush采纳,获得10
刚刚
JoaquinH完成签到,获得积分10
1秒前
1秒前
庸人自扰完成签到,获得积分10
3秒前
暮色完成签到,获得积分10
5秒前
Lucas应助北彧采纳,获得10
5秒前
Felicity完成签到 ,获得积分10
5秒前
hush完成签到,获得积分20
6秒前
高高完成签到,获得积分20
7秒前
Cupid发布了新的文献求助30
7秒前
搜集达人应助信仰采纳,获得10
7秒前
威武的念波完成签到 ,获得积分10
7秒前
8秒前
求文献完成签到,获得积分10
9秒前
9秒前
Jasper应助一口蒜苗采纳,获得15
10秒前
heypee完成签到,获得积分10
11秒前
You完成签到 ,获得积分10
11秒前
Ava应助yzWang采纳,获得10
13秒前
Lsy发布了新的文献求助50
13秒前
13秒前
kotea完成签到,获得积分10
14秒前
科研通AI2S应助胡图图采纳,获得10
15秒前
暮色发布了新的文献求助10
16秒前
英俊的铭应助明亮的香薇采纳,获得10
16秒前
16秒前
kelvin发布了新的文献求助50
16秒前
16秒前
高高发布了新的文献求助10
19秒前
19秒前
19秒前
欣喜惜筠完成签到,获得积分10
20秒前
20秒前
20秒前
YuLu完成签到 ,获得积分10
21秒前
21秒前
甜橙汁完成签到,获得积分10
21秒前
大模型应助酸菜炖粉条采纳,获得10
21秒前
水仙完成签到,获得积分10
22秒前
小狒狒完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547