亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reliability Analyses of Soil Slopes with Multiple Spatially Varying Parameters Using Multi-Input Convolutional Neural Networks

有限元法 计算机科学 可靠性(半导体) 打滑(空气动力学) 卷积神经网络 维数之咒 人工神经网络 卷积(计算机科学) 算法 降维 结构工程 工程类 人工智能 功率(物理) 物理 量子力学 航空航天工程
作者
Yibiao Liu,Weizhong Ren
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (7) 被引量:2
标识
DOI:10.1061/ijgnai.gmeng-8234
摘要

Constructing meta-models and selecting a suitable deterministic analysis method are important to improve the computational efficiency and accuracy of the nonintrusive reliability analysis of a spatially varying soil slope. However, existing meta-models are not applicable to the slopes considering multiple parameters with high spatial variability. Moreover, it is difficult to identify the failure modes when the spatial variability is high by using deterministic analysis methods based on slip surface search. Therefore, a nonintrusive stochastic strength reduction finite-element method (SRFEM) is developed based on the multi-input convolution neural networks (CNNs) and ABAQUS 2016. The SRFEM developed based on ABAQUS is adopted as the deterministic analysis method to avoid the uncertain search for the critical slip surfaces of slopes with high spatial variability. A multi-input CNN is proposed to construct the meta-model to avoid the "curse of dimensionality" and replace the overmuch times of time-consuming finite-element simulations. It can fit the relationships between multiple spatially varying parameters and the factor of safety by processing different parameters with different streams of CNNs. Two illustrative examples show that the proposed method can accurately identify the failure modes of slopes with different degrees of spatial variability. The agreement of the reliability results based on the proposed method and the general random finite-element method (RFEM) shows the high accuracy of the proposed method. The time cost of the proposed method can be reduced to 6.0 × 10−3 times that of the general RFEM, verifying the high computational efficiency of the proposed method. The multi-input CNN also shows higher fitting accuracy and better interpretability than the single-stream CNN and the support vector machines (SVMs). The generalization ability, accuracy, and efficiency of the proposed method show its potential to carry out the reliability analyses of slopes with multiple spatially varying parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
50秒前
53秒前
56秒前
阿泽发布了新的文献求助10
58秒前
小飞发布了新的文献求助10
1分钟前
阿泽完成签到,获得积分10
1分钟前
缥缈雍应助dormraider采纳,获得10
1分钟前
小飞完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xiaolang2004发布了新的文献求助10
2分钟前
2分钟前
缥缈雍应助静文采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
酷波er应助Gaopkid采纳,获得10
4分钟前
4分钟前
Gaopkid发布了新的文献求助10
4分钟前
4分钟前
科研打工人er完成签到,获得积分10
4分钟前
4分钟前
kate完成签到,获得积分10
4分钟前
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
思源应助科研通管家采纳,获得10
5分钟前
mmyhn应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
Jj7完成签到,获得积分10
6分钟前
科研小弟完成签到,获得积分10
6分钟前
李剑鸿发布了新的文献求助200
6分钟前
7分钟前
聪明的老鼠完成签到,获得积分20
7分钟前
7分钟前
玩命的十三完成签到 ,获得积分10
7分钟前
mmyhn应助科研通管家采纳,获得10
7分钟前
mmyhn应助科研通管家采纳,获得10
7分钟前
mmyhn应助科研通管家采纳,获得10
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555769
求助须知:如何正确求助?哪些是违规求助? 3131382
关于积分的说明 9390959
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715836