Enhanced Energy Storage Performance in Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 Relaxor Ferroelectric Thin Films by Entropy Design

电介质 材料科学 极化(电化学) 储能 电容器 凝聚态物理 化学物理 光电子学 电压 化学 热力学 物理化学 电气工程 功率(物理) 物理 工程类
作者
Jun Wang,Jinfeng Zhou,Hao Zhu,Yunfei Liu,Jin Luo,Yinong Lyu
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:5 (5): 2809-2818 被引量:19
标识
DOI:10.1021/acsaelm.3c00261
摘要

Dielectric thin film capacitors have attracted immense attention in modern pulsed power electronic systems as essential energy-storage components. Nevertheless, there are still a lot of challenges in realizing high recoverable energy densities and efficiencies. Herein, an effective strategy is proposed to achieve an enhanced energy storage performance by increasing atomic configuration entropy and grain refining, through incorporation of multifarious heterovalent cations in A sites. By including Sr0.7Bi0.2TiO3 (SBT) into Na0.5Bi0.5TiO3 (NBT) ferroelectric, slender polarization–electric field hysteresis loops with delayed polarization saturation are realized in the intermediate compositions. The introduction of SBT in NBT increases the heterogeneity of the multivalent cations in A-sites and the atomic configuration entropy along with the existence of atomic disorder and lattice distortion, resulting in grain refining and smaller nanodomains, which enhances the relaxation characteristics and suppresses the early polarization saturation. While further addition of SBT decreases the atomic configuration entropy and the degree of atomic disorder and lattice distortion, the sizes of grains and nanodomain increase, and thus the remnant polarization increases, leading to decreased energy density and efficiency. Finally, 0.4NBT-0.6SBT thin films obtain an enhanced recoverable energy storage density of 63 J/cm3 and an energy storage efficiency of 68%. Moreover, excellent thermal stability (from 20 to 220 °C) and strong fatigue endurance (up to 107 cycles) are achieved. These results demonstrate a heuristic strategy to design high-performance dielectric materials by increasing the atomic configuration entropy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狒狒发布了新的文献求助10
刚刚
1秒前
wwwwyx完成签到,获得积分10
3秒前
风中冰香应助宣邹采纳,获得10
3秒前
changping应助ZHAYUE采纳,获得10
3秒前
吴律发布了新的文献求助10
3秒前
温柔的幻露完成签到,获得积分10
4秒前
赫连人杰完成签到,获得积分10
5秒前
6秒前
yu发布了新的文献求助10
6秒前
7秒前
可爱的函函应助Wsh采纳,获得10
7秒前
9秒前
三金发布了新的文献求助80
9秒前
MZ发布了新的文献求助10
10秒前
li完成签到 ,获得积分10
11秒前
hh发布了新的文献求助10
12秒前
12秒前
13秒前
kyrie发布了新的文献求助10
15秒前
16秒前
儒雅晓霜发布了新的文献求助10
16秒前
16秒前
li完成签到,获得积分10
16秒前
17秒前
liu发布了新的文献求助10
18秒前
18秒前
20秒前
跳跃毒娘完成签到,获得积分10
20秒前
nkym发布了新的文献求助10
21秒前
万能图书馆应助红红采纳,获得10
21秒前
万能图书馆应助lynch采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
跳跳发布了新的文献求助10
22秒前
所所应助科研通管家采纳,获得10
22秒前
Hello应助鹿茸采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得80
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210