离解(化学)
材料科学
催化作用
空位缺陷
Atom(片上系统)
光催化
光化学
选择性
化学吸附
分子
化学物理
纳米技术
物理化学
结晶学
化学
计算机科学
生物化学
嵌入式系统
有机化学
作者
Youyu Duan,Yang Wang,Weixuan Zhang,Jiangwei Zhang,Chaogang Ban,Danmei Yu,Kai Zhou,Jinjing Tang,Xu Zhang,Xiaodong Han,Li‐Yong Gan,Xiaoping Tao,Xiaoyuan Zhou
标识
DOI:10.1002/adfm.202301729
摘要
Abstract Photocatalytic conversion of CO 2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single‐site features they are usually only amenable to activations involving single molecules. For CO 2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO 2 reduction and H 2 O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single‐atom centers and two‐coordinated N vacancies as dual active sites on CN (Cu 1 /N 2C V‐CN). Experimental and theoretical results show that Cu single‐atom centers promote CO 2 chemisorption and activation via accumulating photogenerated electrons, and the N 2C V sites enhance the dissociation of H 2 O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual‐functional sites, the Cu 1 /N 2C V‐CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g −1 h −1 . An ingenious atomic‐level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO 2 photoreduction process.
科研通智能强力驱动
Strongly Powered by AbleSci AI