Integration of simultaneous fMRI and EEG source localization in emotional decision problems

眶额皮质 脑电图 心理学 前额叶皮质 神经科学 贝叶斯概率 前额叶腹外侧皮质 同步脑电与功能磁共振 大脑定位 认知心理学 功能磁共振成像 腹侧纹状体 计算机科学 人工智能 纹状体 认知 多巴胺
作者
Zhongyi Jiang,Yin Liu,Wenjie Li,Yakang Dai,Ling Zou
出处
期刊:Behavioural Brain Research [Elsevier]
卷期号:448: 114445-114445 被引量:3
标识
DOI:10.1016/j.bbr.2023.114445
摘要

Simultaneous EEG-fMRI has been a powerful technique to understand the mechanism of the brain in recent years. In this paper, we develop an integrating method by integrating the EEG data into the fMRI data based on the parametric empirical Bayesian (PEB) model to improve the accuracy of the brain source location. The gambling task, a classic paradigm, is used for the emotional decision-making study in this paper. The proposed method was conducted on 21 participants, including 16 men and 5 women. Contrary to the previous method that only localizes the area widely distributed across the ventral striatum and orbitofrontal cortex, the proposed method localizes accurately at the orbital frontal cortex during the process of the brain's emotional decision-making. The activated brain regions extracted by source localization were mainly located in the prefrontal and orbitofrontal lobes; the activation of the temporal pole regions unrelated to reward processing disappeared, and the activation of the somatosensory cortex and motor cortex was significantly reduced. The log evidence shows that the integration of simultaneous fMRI and EEG method based on synchronized data evidence is 22,420, the largest value among the three methods. The integration method always takes on a larger value of log evidence and describes a better performance in analysis associated with source localization. DATA AVAILABILITY: The data used in the current study are available from the corresponding author upon on reasonable request.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊嘞嘞完成签到,获得积分10
1秒前
赘婿应助周小花采纳,获得10
1秒前
2秒前
19558991211发布了新的文献求助30
2秒前
2秒前
科研通AI5应助迷路的鹤轩采纳,获得10
2秒前
windows完成签到,获得积分10
3秒前
幽幽发布了新的文献求助10
3秒前
情怀应助叶子采纳,获得10
4秒前
boo发布了新的文献求助10
4秒前
机灵的小蘑菇完成签到,获得积分10
5秒前
躺平的小咸鱼完成签到,获得积分10
5秒前
6秒前
6秒前
小二郎应助苗条凌瑶采纳,获得10
7秒前
7秒前
秧木发布了新的文献求助10
7秒前
章如豹发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
可靠的无颜完成签到,获得积分10
9秒前
小柴狗发布了新的文献求助10
9秒前
19558991211完成签到,获得积分20
10秒前
11秒前
yoke完成签到,获得积分10
13秒前
张大善人完成签到 ,获得积分20
13秒前
归尘发布了新的文献求助50
13秒前
Le~le完成签到,获得积分10
15秒前
16秒前
RC_Wang发布了新的文献求助200
17秒前
深情安青应助shifeng_zai采纳,获得10
17秒前
19秒前
所所应助kk采纳,获得10
19秒前
Lucas应助guyan采纳,获得10
20秒前
YoungDoctor完成签到,获得积分0
20秒前
请叫我风吹麦浪应助de采纳,获得10
20秒前
科研通AI5应助FG采纳,获得10
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379