Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification

计算机科学 人工智能 模式识别(心理学) 合并(版本控制) 机器学习 上下文图像分类 多标签分类 图像(数学) 情报检索
作者
Yuhan Zhang,Luyang Luo,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102772-102772 被引量:10
标识
DOI:10.1016/j.media.2023.102772
摘要

Multi-label classification (MLC) can attach multiple labels on single image, and has achieved promising results on medical images. But existing MLC methods still face challenging clinical realities in practical use, such as: (1) medical risks arising from misclassification, (2) sample imbalance problem among different diseases, (3) inability to classify the diseases that are not pre-defined (unseen diseases). Here, we design a hybrid label to improve the flexibility of MLC methods and alleviate the sample imbalance problem. Specifically, in the labeled training set, we remain independent labels for high-frequency diseases with enough samples and use a hybrid label to merge low-frequency diseases with fewer samples. The hybrid label can also be used to put unseen diseases in practical use. In this paper, we propose Triplet Attention and Dual-pool Contrastive Learning (TA-DCL) for multi-label medical image classification based on the aforementioned label representation. TA-DCL architecture is a triplet attention network (TAN), which combines category-attention, self-attention and cross-attention together to learn high-quality label embeddings for all disease labels by mining effective information from medical images. DCL includes dual-pool contrastive training (DCT) and dual-pool contrastive inference (DCI). DCT optimizes the clustering centers of label embeddings belonging to different disease labels to improve the discrimination of label embeddings. DCI relieves the error classification of sick cases for reducing the clinical risk and improving the ability to detect unseen diseases by contrast of differences. TA-DCL is validated on two public medical image datasets, ODIR and NIH-ChestXray14, showing superior performance than other state-of-the-art MLC methods. Code is available at https://github.com/ZhangYH0502/TA-DCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖仔完成签到,获得积分10
1秒前
2秒前
乐一李完成签到,获得积分10
2秒前
博ge完成签到 ,获得积分10
2秒前
斯文稚晴完成签到 ,获得积分10
2秒前
2秒前
乱七八糟发布了新的文献求助10
3秒前
6秒前
坚定迎天完成签到,获得积分10
6秒前
深情安青应助风趣的烤鸡采纳,获得10
7秒前
Karma发布了新的文献求助30
8秒前
曾经电源发布了新的文献求助10
9秒前
终醒完成签到,获得积分10
9秒前
ding应助手动阀采纳,获得10
10秒前
moonlight完成签到,获得积分10
12秒前
12秒前
12秒前
萌萌完成签到,获得积分20
13秒前
虚心半莲发布了新的文献求助10
17秒前
慢慢发布了新的文献求助10
18秒前
云瑾应助老实的鼠标采纳,获得10
18秒前
18秒前
18秒前
18秒前
Gxx完成签到,获得积分10
19秒前
fanfan完成签到,获得积分10
19秒前
彭于晏应助迷人幻波采纳,获得10
20秒前
LXYang完成签到,获得积分10
20秒前
辣比小欣完成签到,获得积分10
21秒前
tiantiantian完成签到,获得积分10
21秒前
杜康完成签到,获得积分10
21秒前
喵喵发布了新的文献求助10
21秒前
手动阀发布了新的文献求助10
21秒前
22秒前
阿金完成签到,获得积分20
22秒前
高高平蝶发布了新的文献求助10
23秒前
852应助柚子茶采纳,获得10
25秒前
姜姜姜完成签到 ,获得积分10
25秒前
kk完成签到,获得积分10
25秒前
明理的从波完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023