已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification

计算机科学 人工智能 模式识别(心理学) 合并(版本控制) 机器学习 上下文图像分类 多标签分类 图像(数学) 情报检索
作者
Yuhan Zhang,Luyang Luo,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102772-102772 被引量:32
标识
DOI:10.1016/j.media.2023.102772
摘要

Multi-label classification (MLC) can attach multiple labels on single image, and has achieved promising results on medical images. But existing MLC methods still face challenging clinical realities in practical use, such as: (1) medical risks arising from misclassification, (2) sample imbalance problem among different diseases, (3) inability to classify the diseases that are not pre-defined (unseen diseases). Here, we design a hybrid label to improve the flexibility of MLC methods and alleviate the sample imbalance problem. Specifically, in the labeled training set, we remain independent labels for high-frequency diseases with enough samples and use a hybrid label to merge low-frequency diseases with fewer samples. The hybrid label can also be used to put unseen diseases in practical use. In this paper, we propose Triplet Attention and Dual-pool Contrastive Learning (TA-DCL) for multi-label medical image classification based on the aforementioned label representation. TA-DCL architecture is a triplet attention network (TAN), which combines category-attention, self-attention and cross-attention together to learn high-quality label embeddings for all disease labels by mining effective information from medical images. DCL includes dual-pool contrastive training (DCT) and dual-pool contrastive inference (DCI). DCT optimizes the clustering centers of label embeddings belonging to different disease labels to improve the discrimination of label embeddings. DCI relieves the error classification of sick cases for reducing the clinical risk and improving the ability to detect unseen diseases by contrast of differences. TA-DCL is validated on two public medical image datasets, ODIR and NIH-ChestXray14, showing superior performance than other state-of-the-art MLC methods. Code is available at https://github.com/ZhangYH0502/TA-DCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布可完成签到,获得积分10
刚刚
2秒前
善学以致用应助勤劳宛菡采纳,获得30
3秒前
5秒前
怡然的向南完成签到,获得积分10
7秒前
7秒前
Justin完成签到,获得积分10
8秒前
9秒前
10秒前
田様应助左岸采纳,获得10
10秒前
丘比特应助寒雨采纳,获得10
11秒前
后会无期完成签到,获得积分10
11秒前
良辰应助我超爱cs采纳,获得10
12秒前
xuexin发布了新的文献求助10
12秒前
酷波er应助123采纳,获得10
13秒前
知了睡醒了完成签到 ,获得积分10
13秒前
15秒前
16秒前
17秒前
Bystander完成签到 ,获得积分10
18秒前
19秒前
科研通AI5应助xuexin采纳,获得10
19秒前
勤劳宛菡发布了新的文献求助30
20秒前
早起困困完成签到,获得积分10
23秒前
左岸发布了新的文献求助10
23秒前
25秒前
27秒前
27秒前
28秒前
xuexin完成签到,获得积分10
29秒前
深情安青应助美丽的冷风采纳,获得10
30秒前
Peggy完成签到 ,获得积分10
32秒前
33秒前
王大壮完成签到,获得积分10
34秒前
35秒前
无花果应助老阳采纳,获得10
36秒前
敏er发布了新的文献求助10
37秒前
40秒前
40秒前
9527z完成签到,获得积分10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227979
关于积分的说明 9777835
捐赠科研通 2938188
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962