Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification

计算机科学 人工智能 模式识别(心理学) 合并(版本控制) 机器学习 上下文图像分类 多标签分类 图像(数学) 情报检索
作者
Yuhan Zhang,Luyang Luo,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102772-102772 被引量:32
标识
DOI:10.1016/j.media.2023.102772
摘要

Multi-label classification (MLC) can attach multiple labels on single image, and has achieved promising results on medical images. But existing MLC methods still face challenging clinical realities in practical use, such as: (1) medical risks arising from misclassification, (2) sample imbalance problem among different diseases, (3) inability to classify the diseases that are not pre-defined (unseen diseases). Here, we design a hybrid label to improve the flexibility of MLC methods and alleviate the sample imbalance problem. Specifically, in the labeled training set, we remain independent labels for high-frequency diseases with enough samples and use a hybrid label to merge low-frequency diseases with fewer samples. The hybrid label can also be used to put unseen diseases in practical use. In this paper, we propose Triplet Attention and Dual-pool Contrastive Learning (TA-DCL) for multi-label medical image classification based on the aforementioned label representation. TA-DCL architecture is a triplet attention network (TAN), which combines category-attention, self-attention and cross-attention together to learn high-quality label embeddings for all disease labels by mining effective information from medical images. DCL includes dual-pool contrastive training (DCT) and dual-pool contrastive inference (DCI). DCT optimizes the clustering centers of label embeddings belonging to different disease labels to improve the discrimination of label embeddings. DCI relieves the error classification of sick cases for reducing the clinical risk and improving the ability to detect unseen diseases by contrast of differences. TA-DCL is validated on two public medical image datasets, ODIR and NIH-ChestXray14, showing superior performance than other state-of-the-art MLC methods. Code is available at https://github.com/ZhangYH0502/TA-DCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助重要的天空采纳,获得10
刚刚
甜甜的静柏完成签到 ,获得积分10
2秒前
马马完成签到 ,获得积分10
2秒前
CAOHOU应助左丘以云采纳,获得10
2秒前
123456完成签到,获得积分10
2秒前
那时的苹果完成签到,获得积分10
2秒前
JG完成签到 ,获得积分10
2秒前
传奇3应助nyfz2002采纳,获得10
3秒前
Hyperme完成签到,获得积分10
3秒前
4秒前
传统的松鼠完成签到 ,获得积分10
4秒前
彪壮的刺猬完成签到,获得积分10
5秒前
鹏gg完成签到,获得积分10
6秒前
6秒前
山雀发布了新的文献求助10
6秒前
宁霸完成签到,获得积分0
7秒前
虚心念桃完成签到,获得积分10
7秒前
AURORA丶完成签到 ,获得积分10
7秒前
7秒前
wanci应助WTTTTTFFFFFF采纳,获得10
8秒前
9秒前
HLElxs完成签到 ,获得积分10
9秒前
Parsifal完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Nico多多看paper完成签到,获得积分10
10秒前
成就的绯发布了新的文献求助10
11秒前
asule13完成签到,获得积分10
12秒前
12秒前
左丘以云完成签到,获得积分10
13秒前
柯氏气团不是气团完成签到,获得积分10
13秒前
机灵的冰夏完成签到,获得积分10
14秒前
14秒前
Eho完成签到,获得积分20
15秒前
ggcocoa发布了新的文献求助10
15秒前
紫麒麟完成签到,获得积分10
15秒前
16秒前
YF发布了新的文献求助10
16秒前
沉醉的中国钵完成签到 ,获得积分10
16秒前
青街向晚发布了新的文献求助10
17秒前
枫枫829完成签到 ,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027