亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:267: 110393-110393 被引量:101
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
daytoy完成签到,获得积分20
31秒前
37秒前
47秒前
火星的雪完成签到 ,获得积分0
50秒前
1分钟前
he发布了新的文献求助10
1分钟前
思源应助MrRen采纳,获得10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
抚琴祛魅完成签到 ,获得积分10
2分钟前
重重完成签到 ,获得积分10
3分钟前
qiaorankongling完成签到 ,获得积分10
3分钟前
田様应助he采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
MrRen完成签到,获得积分10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
MrRen发布了新的文献求助10
3分钟前
木昆完成签到 ,获得积分10
3分钟前
Giny完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
挣钱抱男模完成签到,获得积分10
4分钟前
4分钟前
he发布了新的文献求助10
4分钟前
Orange应助he采纳,获得10
4分钟前
浮游应助挣钱抱男模采纳,获得10
4分钟前
我是老大应助YY采纳,获得30
5分钟前
5分钟前
一只鲨呱完成签到 ,获得积分10
5分钟前
灵巧的代芙完成签到 ,获得积分10
6分钟前
6分钟前
烟花应助朗源Wu采纳,获得10
6分钟前
7分钟前
ZZ发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470165
求助须知:如何正确求助?哪些是违规求助? 4573063
关于积分的说明 14338019
捐赠科研通 4500079
什么是DOI,文献DOI怎么找? 2465528
邀请新用户注册赠送积分活动 1453892
关于科研通互助平台的介绍 1428523