BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:267: 110393-110393 被引量:101
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅盼海发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
Kkkkkk发布了新的文献求助10
3秒前
zishan发布了新的文献求助20
4秒前
lllyf发布了新的文献求助10
4秒前
侧耳倾听发布了新的文献求助10
4秒前
寒冷的寒梦完成签到,获得积分10
4秒前
蕾蕾完成签到,获得积分10
4秒前
zzmyyds发布了新的文献求助10
5秒前
5秒前
5秒前
asqw完成签到,获得积分10
6秒前
YMH发布了新的文献求助10
7秒前
zzer发布了新的文献求助10
7秒前
tang123完成签到,获得积分10
7秒前
3d54s2完成签到,获得积分10
7秒前
小青椒应助潇洒的依凝采纳,获得30
7秒前
李海翔完成签到,获得积分10
8秒前
10秒前
99giddens发布了新的文献求助100
10秒前
10秒前
烤肠应助闪闪的熠彤采纳,获得20
10秒前
崔win完成签到,获得积分10
10秒前
lzl完成签到,获得积分10
11秒前
12秒前
Zx_1993应助小星星采纳,获得20
12秒前
FashionBoy应助huizi采纳,获得10
12秒前
无花果应助123采纳,获得10
12秒前
12秒前
13秒前
13秒前
lili发布了新的文献求助10
13秒前
科研通AI6应助齐齐采纳,获得10
14秒前
14秒前
LJY完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531988
求助须知:如何正确求助?哪些是违规求助? 4620728
关于积分的说明 14574699
捐赠科研通 4560496
什么是DOI,文献DOI怎么找? 2498874
邀请新用户注册赠送积分活动 1478787
关于科研通互助平台的介绍 1450096