BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:267: 110393-110393 被引量:43
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的问枫完成签到 ,获得积分10
1秒前
2秒前
羊咩咩发布了新的文献求助10
2秒前
22关注了科研通微信公众号
3秒前
wwz应助Chenyol采纳,获得10
3秒前
善良绿柳发布了新的文献求助20
3秒前
Julia发布了新的文献求助10
5秒前
6秒前
刻苦忆寒发布了新的文献求助10
6秒前
wanci应助怕黑的丝袜采纳,获得10
7秒前
852应助小小采纳,获得10
7秒前
仰头看云发布了新的文献求助30
8秒前
Peyton Why发布了新的文献求助10
8秒前
田様应助duoduo采纳,获得10
9秒前
FashionBoy应助BGRC131031采纳,获得10
9秒前
11秒前
11秒前
蜡笔小新完成签到,获得积分10
11秒前
虫不知发布了新的文献求助10
12秒前
宜醉宜游宜睡应助大雄采纳,获得10
12秒前
yyyyyyyyjx发布了新的文献求助20
12秒前
13秒前
15秒前
Peyton Why完成签到,获得积分10
15秒前
故意的鼠标完成签到,获得积分10
15秒前
16秒前
核动力牛马完成签到,获得积分10
16秒前
文献搬运工完成签到,获得积分10
16秒前
馒头发布了新的文献求助10
18秒前
lzc发布了新的文献求助10
18秒前
星辰大海应助3s采纳,获得10
20秒前
jonghuang发布了新的文献求助10
20秒前
可靠的雨筠完成签到,获得积分10
22秒前
可爱的函函应助guajiguaji采纳,获得10
22秒前
24秒前
24秒前
25秒前
zho应助Tutusamo采纳,获得10
25秒前
认真的孤云完成签到 ,获得积分10
25秒前
22完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919