已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:267: 110393-110393 被引量:101
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lalala完成签到 ,获得积分10
1秒前
康康小白杨完成签到 ,获得积分10
3秒前
香风智乃完成签到 ,获得积分10
5秒前
慕青应助生动的冷玉采纳,获得10
5秒前
5秒前
LLL发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
langzfs完成签到,获得积分10
8秒前
赵俊翔完成签到 ,获得积分10
8秒前
科研通AI6应助俊秀的谷云采纳,获得10
10秒前
王婷完成签到 ,获得积分10
11秒前
11秒前
西瓜完成签到 ,获得积分10
12秒前
吴彦祖应助otkur采纳,获得10
12秒前
情怀应助真不错采纳,获得10
12秒前
13秒前
直率孤风发布了新的文献求助10
13秒前
agf发布了新的文献求助10
13秒前
zzyyy完成签到 ,获得积分10
14秒前
Ashley发布了新的文献求助10
16秒前
17秒前
激动的55完成签到 ,获得积分10
19秒前
19秒前
19秒前
21秒前
和谐以冬完成签到 ,获得积分10
22秒前
22秒前
想想发布了新的文献求助10
23秒前
24秒前
25秒前
真不错发布了新的文献求助10
25秒前
sunhhhh完成签到 ,获得积分10
26秒前
慕青应助微笑的傲旋采纳,获得10
27秒前
木风2023完成签到,获得积分10
27秒前
28秒前
狂野雅彤发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279