BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images

计算机科学 卷积神经网络 分割 变压器 乳腺癌 乳腺超声检查 深度学习 人工智能 乳腺摄影术 模式识别(心理学) 癌症 医学 内科学 物理 量子力学 电压
作者
Ahmed Iqbal,Muhammad Sharif
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:267: 110393-110393 被引量:52
标识
DOI:10.1016/j.knosys.2023.110393
摘要

Breast cancer is considered the most commonly diagnosed cancer globally and falls second to lung cancer. For the early detection of breast tumors in women, breast cancer analysis using Ultrasound, Mammography, and MRI modalities as the initial screening process. Due to the random variation, irregular shapes, and blurred boundaries of tumor regions, the accurate segmentation of breast tumors is still a tricky task. The existing convolutional neural networks (CNNs) inherit their limitation by extracting global context information and, in most cases, proved less efficient in obtaining satisfactory results. As a solution, we proposed the BTS-ST network, a novel solution for breast tumor segmentation and classification that Swin-Transformer (ST) inspires. The BTS-ST network incorporates Swin-Transformer into traditional CNNs-based U-Net to improve global modeling capabilities. To improve the feature representation capability of irregularly shaped tumors, we first introduced a Spatial Interaction block (SIB), encoding spatial knowledge in the Swin Transformer block by developing pixel-level correlation. The segmentation accuracy of small-scale tumor regions is increased by building a Feature Compression block (FCB) to prevent information loss and compress smaller-scale features in patch token down sampling of Swin-Transformer. Finally, a Relationship Aggregation block (RAB) is developed as a bridge between dual encoders to combine global dependencies from Swin-Transformer into the features from CNN hierarchically. Extensive experiments are performed on breast tumor segmentation and classification tasks using multimodality Ultrasound, Mammogram, and MRI-based datasets. The results demonstrate that our proposed solution is comparatively better than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助嘟嘟嘟嘟嘟采纳,获得10
2秒前
星辰大海应助hkh采纳,获得10
2秒前
聪慧的芳发布了新的文献求助10
2秒前
快快毕业完成签到 ,获得积分10
3秒前
tricker完成签到,获得积分10
5秒前
CodeCraft应助houruibut采纳,获得10
6秒前
wshwx完成签到,获得积分10
8秒前
充电宝应助淡淡冬瓜采纳,获得10
11秒前
乐乐完成签到,获得积分10
12秒前
科研通AI5应助怕黑怜晴采纳,获得30
12秒前
长欢完成签到,获得积分10
14秒前
大男完成签到,获得积分10
17秒前
83366完成签到,获得积分10
17秒前
小二郎应助奶茶咖啡冻采纳,获得10
17秒前
聪慧的芳完成签到,获得积分20
18秒前
Stella发布了新的文献求助30
19秒前
刘1完成签到 ,获得积分10
20秒前
项听蓉完成签到,获得积分10
22秒前
在水一方应助聪慧的芳采纳,获得10
23秒前
24秒前
代纤绮完成签到,获得积分10
27秒前
27秒前
xjcy应助BIGDUCK采纳,获得10
29秒前
科研通AI2S应助文静墨镜采纳,获得10
29秒前
Pretrial完成签到 ,获得积分10
30秒前
hkh发布了新的文献求助10
30秒前
林间完成签到 ,获得积分10
30秒前
kwen完成签到 ,获得积分10
30秒前
Hello完成签到,获得积分10
31秒前
houruibut发布了新的文献求助20
32秒前
32秒前
所所应助快乐汉堡采纳,获得10
33秒前
tataq发布了新的文献求助10
33秒前
JamesPei应助Zz采纳,获得10
34秒前
xjcy应助贪玩冰绿采纳,获得10
36秒前
传奇3应助xcf6653采纳,获得10
37秒前
科研通AI5应助MRM采纳,获得10
38秒前
39秒前
AlvinCZY发布了新的文献求助20
39秒前
烟花应助tataq采纳,获得10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672688
求助须知:如何正确求助?哪些是违规求助? 3228855
关于积分的说明 9782298
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610759
邀请新用户注册赠送积分活动 760719
科研通“疑难数据库(出版商)”最低求助积分说明 736198