Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning

计算机科学 服务器 强化学习 移动边缘计算 分布式计算 边缘计算 任务(项目管理) 架空(工程) 超时 GSM演进的增强数据速率 马尔可夫决策过程 地铁列车时刻表 计算机网络 人工智能 操作系统 统计 马尔可夫过程 经济 管理 数学
作者
Jian Yang,Qifeng Yuan,Shuangwu Chen,Huasen He,Xiaofeng Jiang,Xiaobin Tan
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3205-3219 被引量:45
标识
DOI:10.1109/tnsm.2023.3240415
摘要

Driven by the prevalence of the computation-intensive and delay-intensive mobile applications, Mobile Edge Computing (MEC) is emerging as a promising solution. Traditional task offloading methods usually rely on centralized decision making, which inevitably involves a high computational complexity and a large state space. However, the MEC is a typical distributed system, where the edge servers are geographically separated, and independently perform the computing tasks. This fact inspires us to conceive a distributed cooperative task offloading system, where each edge server makes its own decision on how to allocate local computing resources and how to migrate tasks among the edge servers. To characterize diverse task requirements, we divide the arrival tasks into different priorities according to the tolerance time, which enables to dynamically schedule the local computing resources for reducing the task timeout. In order to coordinate the independent decision makings of geographically separate edge servers, we propose a priority driven cooperative task offloading algorithm based on multi-agent deep reinforcement learning, where the decision making of each edge server not only depends on its own state but also on the shared global information. We further develop a Variational Recurrent Neural Network (VRNN) based global state sharing model which significantly reduces the communication overhead among edge servers. The performance evaluation conducted on a movement trajectories dataset of mobile devices verifies that the proposed algorithm can reduce the task consumption time and improve the edge computing resources utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
Hu发布了新的文献求助10
1秒前
Hello应助123采纳,获得10
1秒前
3秒前
可爱的函函应助默默问晴采纳,获得10
3秒前
soapffz完成签到,获得积分0
3秒前
田様应助伶俐的招牌采纳,获得10
4秒前
4秒前
4秒前
5秒前
无花果应助leec采纳,获得30
5秒前
炙热萝发布了新的文献求助10
6秒前
Auh完成签到,获得积分10
6秒前
AN发布了新的文献求助10
6秒前
hailey发布了新的文献求助10
8秒前
9秒前
zhuhe完成签到,获得积分10
9秒前
9秒前
丰知然应助小点点采纳,获得10
10秒前
13发布了新的文献求助10
10秒前
Hu完成签到,获得积分20
11秒前
11秒前
Hayat发布了新的文献求助50
11秒前
烟花应助灵巧的石头采纳,获得10
11秒前
12秒前
大模型应助调皮的巧凡采纳,获得10
12秒前
12秒前
12秒前
别管我了完成签到,获得积分10
12秒前
13秒前
yxy发布了新的文献求助10
13秒前
健康小宋完成签到,获得积分10
13秒前
斯文败类应助CDX采纳,获得10
13秒前
善良的函发布了新的文献求助10
14秒前
打打应助含蓄的傲霜采纳,获得10
15秒前
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657