Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning

计算机科学 服务器 强化学习 移动边缘计算 分布式计算 边缘计算 任务(项目管理) 架空(工程) 超时 GSM演进的增强数据速率 马尔可夫决策过程 地铁列车时刻表 边缘设备 计算机网络 人工智能 云计算 操作系统 统计 马尔可夫过程 经济 管理 数学
作者
Jian Yang,Qifeng Yuan,Shuangwu Chen,Huasen He,Xiaofeng Jiang,Xiaobin Tan
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3205-3219 被引量:14
标识
DOI:10.1109/tnsm.2023.3240415
摘要

Driven by the prevalence of the computation-intensive and delay-intensive mobile applications, Mobile Edge Computing (MEC) is emerging as a promising solution. Traditional task offloading methods usually rely on centralized decision making, which inevitably involves a high computational complexity and a large state space. However, the MEC is a typical distributed system, where the edge servers are geographically separated, and independently perform the computing tasks. This fact inspires us to conceive a distributed cooperative task offloading system, where each edge server makes its own decision on how to allocate local computing resources and how to migrate tasks among the edge servers. To characterize diverse task requirements, we divide the arrival tasks into different priorities according to the tolerance time, which enables to dynamically schedule the local computing resources for reducing the task timeout. In order to coordinate the independent decision makings of geographically separate edge servers, we propose a priority driven cooperative task offloading algorithm based on multi-agent deep reinforcement learning, where the decision making of each edge server not only depends on its own state but also on the shared global information. We further develop a Variational Recurrent Neural Network (VRNN) based global state sharing model which significantly reduces the communication overhead among edge servers. The performance evaluation conducted on a movement trajectories dataset of mobile devices verifies that the proposed algorithm can reduce the task consumption time and improve the edge computing resources utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHINA_C13发布了新的文献求助10
刚刚
Mars发布了新的文献求助10
1秒前
哈哈哈完成签到,获得积分10
1秒前
玛卡巴卡应助平常的毛豆采纳,获得100
2秒前
默默的青旋完成签到,获得积分10
3秒前
6秒前
搜集达人应助淡淡采白采纳,获得10
6秒前
高高代珊完成签到 ,获得积分10
7秒前
gmc发布了新的文献求助10
8秒前
8秒前
9秒前
善学以致用应助Mian采纳,获得10
9秒前
学科共进发布了新的文献求助60
10秒前
LWJ完成签到 ,获得积分10
10秒前
10秒前
缓慢的糖豆完成签到,获得积分10
11秒前
阉太狼完成签到,获得积分10
11秒前
12秒前
soory完成签到,获得积分10
13秒前
任性的傲柏完成签到,获得积分10
13秒前
lwk205完成签到,获得积分0
13秒前
14秒前
一一完成签到,获得积分10
14秒前
14秒前
14秒前
高中生完成签到,获得积分10
15秒前
15秒前
15秒前
希望天下0贩的0应助TT采纳,获得10
16秒前
xxegt完成签到 ,获得积分10
16秒前
17秒前
爱吃泡芙发布了新的文献求助10
17秒前
susu完成签到,获得积分10
19秒前
会神发布了新的文献求助10
19秒前
KK完成签到,获得积分10
20秒前
充电宝应助justin采纳,获得10
22秒前
23秒前
Ch完成签到 ,获得积分10
24秒前
26秒前
ajun完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824