Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning

计算机科学 服务器 强化学习 移动边缘计算 分布式计算 边缘计算 任务(项目管理) 架空(工程) 超时 GSM演进的增强数据速率 马尔可夫决策过程 地铁列车时刻表 计算机网络 人工智能 操作系统 统计 马尔可夫过程 经济 管理 数学
作者
Jian Yang,Qifeng Yuan,Shuangwu Chen,Huasen He,Xiaofeng Jiang,Xiaobin Tan
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3205-3219 被引量:22
标识
DOI:10.1109/tnsm.2023.3240415
摘要

Driven by the prevalence of the computation-intensive and delay-intensive mobile applications, Mobile Edge Computing (MEC) is emerging as a promising solution. Traditional task offloading methods usually rely on centralized decision making, which inevitably involves a high computational complexity and a large state space. However, the MEC is a typical distributed system, where the edge servers are geographically separated, and independently perform the computing tasks. This fact inspires us to conceive a distributed cooperative task offloading system, where each edge server makes its own decision on how to allocate local computing resources and how to migrate tasks among the edge servers. To characterize diverse task requirements, we divide the arrival tasks into different priorities according to the tolerance time, which enables to dynamically schedule the local computing resources for reducing the task timeout. In order to coordinate the independent decision makings of geographically separate edge servers, we propose a priority driven cooperative task offloading algorithm based on multi-agent deep reinforcement learning, where the decision making of each edge server not only depends on its own state but also on the shared global information. We further develop a Variational Recurrent Neural Network (VRNN) based global state sharing model which significantly reduces the communication overhead among edge servers. The performance evaluation conducted on a movement trajectories dataset of mobile devices verifies that the proposed algorithm can reduce the task consumption time and improve the edge computing resources utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fusion完成签到,获得积分10
1秒前
Jing发布了新的文献求助20
3秒前
4秒前
科研通AI5应助哈哈哈采纳,获得10
5秒前
5秒前
123发布了新的文献求助10
5秒前
Wudifairy完成签到,获得积分10
6秒前
8秒前
刘丽梅完成签到 ,获得积分10
9秒前
LIU230907完成签到,获得积分20
10秒前
11秒前
我我完成签到,获得积分10
12秒前
好好好发布了新的文献求助10
14秒前
香蕉爆米花完成签到,获得积分10
15秒前
16秒前
lalala发布了新的文献求助10
17秒前
19秒前
20秒前
xiaolongbao315完成签到,获得积分10
20秒前
biubiubiu发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
23秒前
clyhg完成签到,获得积分10
23秒前
阿蒙完成签到,获得积分10
24秒前
单一发布了新的文献求助10
24秒前
小刘鸭鸭完成签到,获得积分10
26秒前
我的小羊发布了新的文献求助10
26秒前
在水一方应助Jing采纳,获得10
27秒前
suye发布了新的文献求助10
27秒前
勤恳发布了新的文献求助10
27秒前
28秒前
28秒前
英吉利25发布了新的文献求助10
29秒前
乐多发布了新的文献求助10
30秒前
kk驳回了zho应助
30秒前
31秒前
Dddd发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070