双金属片
催化作用
材料科学
电化学
氨生产
化学工程
吸附
氨
铜
钌
氮气
无机化学
纳米结构
纳米技术
电极
化学
有机化学
冶金
物理化学
工程类
作者
Kui Li,Lei Ding,Zhiqiang Xie,Gaoqiang Yang,Shule Yu,Weitian Wang,David A. Cullen,Harry M Meyer,Guoxiang Hu,Panchapakesan Ganesh,Thomas R Watkins,Feng-Yuan Zhang
标识
DOI:10.1021/acsami.2c20809
摘要
Electrochemical conversion of nitrogen to green ammonia is an attractive alternative to the Haber-Bosch process. However, it is currently bottlenecked by the lack of highly efficient electrocatalysts to drive the sluggish nitrogen reduction reaction (N2RR). Herein, we strategically design a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge (NS) architecture via a rapid and facile method. The porous NS mixture catalysts exhibit a large electrochemical active surface area and enhanced specific activity arising from the charge redistribution for improved activation and adsorption of the activated nitrogen species. Benefiting from the synergistic effect of the Cu constituent on morphology decoration and thermodynamic suppression of the competing hydrogen evolution reaction, the optimized Ru0.15Cu0.85 NS catalyst presents an impressive N2RR performance with an ammonia yield rate of 26.25 μg h-1 mgcat.-1 (corresponding to 10.5 μg h-1 cm-2) and Faradic efficiency of 4.39% as well as superior stability in alkaline medium, which was superior to that of monometallic Ru and Cu nanostructures. Additionally, this work develops a new bimetallic combination of Ru and Cu, which promotes the strategy to design efficient electrocatalysts for electrochemical ammonia production under ambient conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI