Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins

人工神经网络 均方误差 反向 反向传播 决策树 机器学习 实验设计 计算机科学 人工智能 生物系统 数学 统计 几何学 生物
作者
Kalagotla Sai Chandana,Swetha Karka,Manleen Kaur Gujral,Reddi Kamesh,Anirban Roy
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:11 (2): 109555-109555 被引量:11
标识
DOI:10.1016/j.jece.2023.109555
摘要

In the recent years, the demand for utilisation of CO2 into different chemicals has gathered interest due to increased concerns for global warming. The current work focuses on development of machine learning (ML) framework for catalyst modelling and design for direct conversion of CO2 to lower olefins (LO) based on the structural-composition-operating parameters. Comprehensive review, and data mining exercise was carried out and data base was formed from -55 relevant reports, including 18 input parameters and catalyst activity (i.e., CO2 conversion (%) & LO selectivity (%)) as output parameter. Artificial neural network (ANN) models were developed using Bayesian-Regularisation (BR) and Levenberg-Marquardt (LM) backpropagation learning algorithms for prediction of catalyst activity. Performance of the developed ANN models are compared with linear, tree-based, and kernel-based ML models and has been evaluated based on statistical measures. Out of these ML models, ANN-BR is able to predict CO2 conversion & LO selectivity with less deviation from experimental data (R = 0.90 & 0.8, RMSE = 8.43 & 16.73, AAD = 5.8 & 9.5 for test data respectively), compared to other ML models. Input contribution on post analysis of modelling is considered to understand the significance of predominate feature affecting the target variables. Further, integrated catalyst and process design carried out using inverse design based on multi-objective optimization (NSGA-II) with ANN-BR as objective function. Results indicate two-to-three-folds increase in yields with optimal catalyst composition, operating conditions, and novel combination of catalysts for efficient conversion of CO2 to lower olefins compared to reported experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助实验员小春采纳,获得10
2秒前
小仙女212完成签到,获得积分10
2秒前
专注巨人发布了新的文献求助10
2秒前
3秒前
3秒前
cy5982完成签到,获得积分10
3秒前
4秒前
5秒前
完美世界应助jitianxing采纳,获得10
5秒前
李爱国应助王琨程采纳,获得10
5秒前
6秒前
ll发布了新的文献求助10
6秒前
7秒前
Freekor完成签到,获得积分20
7秒前
7秒前
小火车发布了新的文献求助10
7秒前
CodeCraft应助吃你家大米啦采纳,获得10
8秒前
跳跃的电话完成签到,获得积分10
9秒前
9秒前
专注若之发布了新的文献求助10
9秒前
在下小李发布了新的文献求助10
9秒前
冷傲的板栗完成签到,获得积分10
11秒前
Jimmer发布了新的文献求助10
11秒前
筱菱完成签到,获得积分10
11秒前
11秒前
畅快问蕊完成签到,获得积分20
12秒前
科研通AI5应助blue采纳,获得50
12秒前
honey发布了新的文献求助10
12秒前
英姑应助YYY采纳,获得10
12秒前
momo应助LKT采纳,获得10
13秒前
13秒前
星空完成签到 ,获得积分10
13秒前
专注若之完成签到,获得积分20
15秒前
周冯雪完成签到 ,获得积分10
15秒前
风清扬发布了新的文献求助10
16秒前
畅快问蕊发布了新的文献求助10
16秒前
我是老大应助西子阳采纳,获得10
17秒前
17秒前
Vickicherry应助轻松的雨文采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014