Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins

人工神经网络 均方误差 反向 反向传播 决策树 机器学习 实验设计 计算机科学 人工智能 生物系统 数学 统计 几何学 生物
作者
Kalagotla Sai Chandana,Swetha Karka,Manleen Kaur Gujral,Reddi Kamesh,Anirban Roy
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (2): 109555-109555 被引量:11
标识
DOI:10.1016/j.jece.2023.109555
摘要

In the recent years, the demand for utilisation of CO2 into different chemicals has gathered interest due to increased concerns for global warming. The current work focuses on development of machine learning (ML) framework for catalyst modelling and design for direct conversion of CO2 to lower olefins (LO) based on the structural-composition-operating parameters. Comprehensive review, and data mining exercise was carried out and data base was formed from -55 relevant reports, including 18 input parameters and catalyst activity (i.e., CO2 conversion (%) & LO selectivity (%)) as output parameter. Artificial neural network (ANN) models were developed using Bayesian-Regularisation (BR) and Levenberg-Marquardt (LM) backpropagation learning algorithms for prediction of catalyst activity. Performance of the developed ANN models are compared with linear, tree-based, and kernel-based ML models and has been evaluated based on statistical measures. Out of these ML models, ANN-BR is able to predict CO2 conversion & LO selectivity with less deviation from experimental data (R = 0.90 & 0.8, RMSE = 8.43 & 16.73, AAD = 5.8 & 9.5 for test data respectively), compared to other ML models. Input contribution on post analysis of modelling is considered to understand the significance of predominate feature affecting the target variables. Further, integrated catalyst and process design carried out using inverse design based on multi-objective optimization (NSGA-II) with ANN-BR as objective function. Results indicate two-to-three-folds increase in yields with optimal catalyst composition, operating conditions, and novel combination of catalysts for efficient conversion of CO2 to lower olefins compared to reported experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助夜谈十记采纳,获得10
1秒前
科研人完成签到,获得积分10
1秒前
2秒前
霸气的思柔完成签到,获得积分10
2秒前
所所应助X.-CHEN采纳,获得10
3秒前
4秒前
4秒前
秋海棠发布了新的文献求助10
4秒前
4秒前
Felix发布了新的文献求助10
8秒前
8秒前
Fearless完成签到,获得积分10
8秒前
10秒前
在水一方应助秋海棠采纳,获得10
11秒前
slim完成签到,获得积分10
11秒前
12秒前
FashionBoy应助英俊小美采纳,获得10
12秒前
Promise完成签到 ,获得积分10
14秒前
Felix完成签到,获得积分10
14秒前
14秒前
老实皮皮虾完成签到,获得积分10
14秒前
14秒前
王富贵完成签到,获得积分20
14秒前
元谷雪发布了新的文献求助10
15秒前
爆米花应助看风景的小熊采纳,获得10
17秒前
18秒前
路宝发布了新的文献求助10
19秒前
peterfu发布了新的文献求助10
21秒前
Lucas应助利多可欣采纳,获得30
22秒前
CipherSage应助ff采纳,获得10
22秒前
科研通AI2S应助王子星痕采纳,获得10
23秒前
路宝完成签到,获得积分10
24秒前
Ava应助九九采纳,获得10
25秒前
shangxinyu完成签到,获得积分10
26秒前
al完成签到 ,获得积分10
27秒前
wbh完成签到 ,获得积分10
27秒前
yar应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得20
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
三黑猫应助科研通管家采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115