纤维素
电导法
化学工程
化学
透射电子显微镜
热重分析
滴定法
水解
木质素
萃取(化学)
纳米晶
材料科学
纳米技术
有机化学
无机化学
工程类
作者
Marcel Kröger,Olamide Badara,Timo Pääkkönen,Inge Schlapp-Hackl,Sami Hietala,Eero Kontturi
标识
DOI:10.1021/acs.biomac.2c01363
摘要
Phosphorylation of cellulose nanocrystals (CNCs) has remained a marginal activity despite the undisputed application potential in flame-retardant materials, sustainable high-capacity ion-exchange materials, or substrates for biomineralization among others. This is largely due to strenuous extraction methods prone to a combination of poor reproducibility, low degrees of substitution, disappointing yields, and impractical reaction sequences. Here, we demonstrate an improved methodology relying on the modification routines for phosphorylated cellulose nanofibers and hydrolysis by gaseous HCl to isolate CNCs. This allows us to overcome the aforementioned shortcomings and to reliably and reproducibly extract phosphorylated CNCs with exceptionally high surface charge (∼2000 mmol/kg) in a straightforward routine that minimizes water consumption and maximizes yields. The CNCs were characterized by NMR, ζpotential, conductometric titration, thermogravimetry, elemental analysis, wide-angle X-ray scattering, transmission electron microscopy, and atomic force microscopy.
科研通智能强力驱动
Strongly Powered by AbleSci AI