Planning Ginkgo biloba future fruit production areas under climate change: Application of a combinatorial modeling approach

银杏 银杏 栖息地 气候变化 环境科学 生产力 农林复合经营 生产(经济) 生物 农学 生态学 园艺 植物 宏观经济学 经济
作者
Lei Feng,Jiejie Sun,Yousry A. El‐Kassaby,Dawei Luo,Jiahuan Guo,Xiao He,Guanghua Zhao,Xiangni Tian,Jian Qiu,Ze Feng,Tongli Wang,Guibin Wang
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:533: 120861-120861 被引量:3
标识
DOI:10.1016/j.foreco.2023.120861
摘要

Ginkgo biloba forests are widely studied for their fruits' high medicinal, edible, and economic values with an increasing global demand for its fruits supply. The impact of climate change on the habitat suitability of this species has been assessed in previous studies. This study was to address the climate change impact on both habitat suitability and fruit yield. We used fruit grain weight to represent fruit productivity and quality of Ginkgo fruit forests and related it to climate variables to develop a climate response function (Method I). Meanwhile, we also built a Maxent habitat suitability model and associated it with fruit grain weight (Method II). Results showed that Method I provided much higher prediction accuracy (R2 = 0.68) than Method II (R2 = 0.39). We combined Method I with the species habitat model to predict suitable production areas of Ginkgo fruit to achieve high fruit production within suitable habitats for the contemporary and future periods. We found that Ginkgo fruit grain weight was mainly affected by mean annual average temperature (MAT) and mean annual precipitation (MAP), while the degree-days below 0 ℃ (DD < 0) was the main climate factor limiting the distribution of Ginkgo fruit forests suitable habitat. The combined model predictions showed that the suitable production areas of Ginkgo fruit forests are expected to decrease and move northeastward in the future under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Our predictions can be used to maximize Ginkgo fruit quality production while minimizing the risk of low survival in the planning of Ginkgo fruit forest production areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到,获得积分10
刚刚
小可发布了新的文献求助10
刚刚
1秒前
LKGG完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
周士乐发布了新的文献求助10
2秒前
Sunshine发布了新的文献求助10
2秒前
呼吸之野完成签到,获得积分10
3秒前
害怕的小懒虫完成签到,获得积分10
3秒前
思源应助Nefelibata采纳,获得10
4秒前
妮儿发布了新的文献求助10
4秒前
BareBear应助rosa采纳,获得10
4秒前
沉默凡桃发布了新的文献求助10
5秒前
Orange应助9℃采纳,获得10
5秒前
5秒前
一只橘子完成签到 ,获得积分10
5秒前
6秒前
韭黄发布了新的文献求助10
6秒前
西瓜发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
6秒前
wcy关注了科研通微信公众号
6秒前
7秒前
7秒前
CipherSage应助爱喝冰可乐采纳,获得10
8秒前
8秒前
bdvdsrwteges完成签到,获得积分10
8秒前
鱼雷完成签到,获得积分10
9秒前
9秒前
天天快乐应助喜洋洋采纳,获得10
9秒前
PANSIXUAN完成签到 ,获得积分10
10秒前
善良香岚发布了新的文献求助10
10秒前
10秒前
huizi完成签到,获得积分20
10秒前
RichardZ完成签到,获得积分10
10秒前
10秒前
左左发布了新的文献求助10
11秒前
执着的怜寒应助哈哈哈haha采纳,获得40
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759