A Comparison of Different Atmospheric Turbulence Simulation Methods for Image Restoration

计算机科学 湍流 计算机视觉 领域(数学) 人工智能 图像复原 面子(社会学概念) 航程(航空) 大气湍流 图像(数学) 图像处理 工程类 气象学 航空航天工程 数学 社会科学 物理 社会学 纯数学
作者
Nithin Gopalakrishnan Nair,Kangfu Mei,Vishal M. Patel
标识
DOI:10.1109/icip46576.2022.9897969
摘要

Atmospheric turbulence deteriorates the quality of images captured by long-range imaging systems by introducing blur and geometric distortions to the captured scene. This leads to a drastic drop in performance when computer vision algorithms like object/face recognition and detection are performed on these images. In re-cent years, various deep learning-based atmospheric turbulence mitigation methods have been proposed in the literature. These methods are often trained using synthetically generated images and tested on real-world images. Hence, the performance of these restoration methods depends on the type of simulation used for training the network. In this paper, we systematically evaluate the effectiveness of various turbulence simulation methods on image restoration. In particular, we evaluate the performance of two state-or-the-art restoration networks using six simulations method on a real-world LRFID dataset consisting of face images degraded by turbulence. This paper will provide guidance to the researchers and practitioners working in this field to choose the suitable data generation models for training deep models for turbulence mitigation. The implementation codes for the simulation methods, source codes for the networks and the pre-trained models are available at https://github.com/Nithin-GK/Turbulence-Simulations
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reed完成签到,获得积分20
刚刚
丰富的鞅完成签到,获得积分10
1秒前
冷静白晴发布了新的文献求助10
1秒前
大靓仔发布了新的文献求助10
2秒前
leeshho完成签到,获得积分10
2秒前
宗语雪完成签到,获得积分10
3秒前
3秒前
3秒前
CipherSage应助ZZH采纳,获得10
3秒前
4秒前
4秒前
英俊的铭应助诚心的代容采纳,获得10
4秒前
毛豆应助weiwenzuo采纳,获得10
4秒前
zyx030发布了新的文献求助10
4秒前
丘比特应助怕黑的擎采纳,获得10
5秒前
30发布了新的文献求助30
5秒前
7秒前
lsjdsdb发布了新的文献求助10
7秒前
7秒前
LLL完成签到,获得积分10
7秒前
小葱发布了新的文献求助10
9秒前
煎熬日发布了新的文献求助10
9秒前
9秒前
11秒前
Akim应助懵懂的明辉采纳,获得10
11秒前
11秒前
清风如月完成签到,获得积分10
11秒前
11秒前
11秒前
Murphy_12完成签到 ,获得积分10
12秒前
rocky发布了新的文献求助10
12秒前
12秒前
Orange应助记忆采纳,获得10
13秒前
vivian完成签到 ,获得积分10
14秒前
14秒前
丑鸭子完成签到,获得积分20
14秒前
DBY完成签到,获得积分10
15秒前
诚心的代容完成签到,获得积分20
15秒前
科目三应助小葱采纳,获得10
16秒前
Akim应助小葱采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916