Clustering using unsupervised machine learning to stratify the risk of immune‐related liver injury

医学 危险系数 内科学 入射(几何) 置信区间 胃肠病学 累积发病率 队列 肝损伤 中性粒细胞与淋巴细胞比率 不利影响 淋巴细胞 物理 光学
作者
Takafumi Yamamoto,Hikaru Morooka,Takanori Ito,Masatoshi Ishigami,Kazuyuki Mizuno,Shinya Yokoyama,Kenta Yamamoto,Norihiro Imai,Yoji Ishizu,Takashi Honda,Kenji Yokota,Tetsunari Hase,Osamu Maeda,Naozumi Hashimoto,Yuichi Ando,Masashi Akiyama,Hiroki Kawashima
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:38 (2): 251-258 被引量:6
标识
DOI:10.1111/jgh.16038
摘要

Immune-related liver injury (liver-irAE) is a clinical problem with a potentially poor prognosis.We retrospectively collected clinical data from patients treated with immune checkpoint inhibitors between September 2014 and December 2021 at the Nagoya University Hospital. Using an unsupervised machine learning method, the Gaussian mixture model, to divide the cohort into clusters based on inflammatory markers, we investigated the cumulative incidence of liver-irAEs in these clusters.This study included a total of 702 patients. Among them, 492 (70.1%) patients were male, and the mean age was 66.6 years. During the mean follow-up period of 423 days, severe liver-irAEs (Common Terminology Criteria for Adverse Events grade ≥ 3) occurred in 43 patients. Patients were divided into five clusters (a, b, c, d, and e). The cumulative incidence of liver-irAE was higher in cluster c than in cluster a (hazard ratio [HR]: 13.59, 95% confidence interval [CI]: 1.70-108.76, P = 0.014), and overall survival was worse in clusters c and d than in cluster a (HR: 2.83, 95% CI: 1.77-4.50, P < 0.001; HR: 2.87, 95% CI: 1.47-5.60, P = 0.002, respectively). Clusters c and d were characterized by high temperature, C-reactive protein, platelets, and low albumin. However, there were differences in the prevalence of neutrophil count, neutrophil-to-lymphocyte ratio, and liver metastases between both clusters.The combined assessment of multiple markers and body temperature may help stratify high-risk groups for developing liver-irAE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助进取拼搏采纳,获得10
刚刚
1秒前
dingdong发布了新的文献求助10
1秒前
you完成签到 ,获得积分10
2秒前
qwf完成签到 ,获得积分10
2秒前
3秒前
万能图书馆应助一一采纳,获得10
3秒前
执着跳跳糖完成签到 ,获得积分10
4秒前
阳yang完成签到,获得积分10
4秒前
牛头人完成签到,获得积分10
4秒前
5秒前
Rrr发布了新的文献求助10
5秒前
6秒前
6秒前
serenity完成签到 ,获得积分10
6秒前
Benliu完成签到,获得积分10
6秒前
csq发布了新的文献求助10
7秒前
8秒前
Hello应助外向的醉易采纳,获得10
8秒前
DWWWDAADAD完成签到,获得积分10
11秒前
科研通AI5应助一天八杯水采纳,获得10
12秒前
杨大仙儿完成签到 ,获得积分10
12秒前
14秒前
坚强的广山应助木头人采纳,获得200
14秒前
嘻哈学习完成签到,获得积分10
14秒前
14秒前
14秒前
ying完成签到,获得积分10
15秒前
15秒前
虚幻白玉完成签到,获得积分10
16秒前
安静的孤萍完成签到,获得积分10
17秒前
17秒前
lyz666发布了新的文献求助10
17秒前
liuxl发布了新的文献求助10
18秒前
smile完成签到,获得积分20
19秒前
Shuo Yang完成签到,获得积分10
19秒前
19秒前
伊酒发布了新的文献求助10
19秒前
蓉儿完成签到 ,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808