数学
Dirichlet边界条件
阿利效应
霍普夫分叉
数学分析
平流
反应扩散系统
Dirichlet分布
分叉
边界(拓扑)
增长率
边值问题
应用数学
几何学
非线性系统
物理
热力学
量子力学
社会学
人口学
人口
作者
Tingting Wen,Xiaoli Wang,Guohong Zhang
标识
DOI:10.1016/j.jmaa.2022.126823
摘要
In this paper, we investigate the dynamics of a reaction-diffusion-advection equation with nonlocal delay effect and Dirichlet boundary condition. The existence of spatially nonhomogeneous steady states and the associated Hopf bifurcation are obtained by using the Lyapunov-Schmidt reduction. We also give applications of the theoretical results to models with a logistic growth rate and a weak Allee growth rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI