孵化
丙二醛
毒性
生物
达尼奥
转录组
男科
金属硫蛋白
斑马鱼
抗氧化剂
分子生物学
化学
内科学
生物化学
基因表达
基因
动物科学
医学
作者
Xinrong Wei,Xiao Li,Ping Liu,Lixia Li,Haishan Chen,Dan Li,Juan Liu,Lingtian Xie
标识
DOI:10.1016/j.scitotenv.2022.160265
摘要
Although several studies have evaluated the effects of Thallium (Tl) in adult species of fish, the developmental toxicity of Tl has not been previously explored. In this study, zebrafish embryos (<4 h post fertilization (hpf)) were exposed to Tl at concentrations from 0.8 to 400 μg L-1 for 7 d. The results showed that the decreased hatching rate and increased malformation rate were observed in the larvae. The swimming velocity of larvae from 200 and 400 μg L-1 treatments was respectively reduced by ~26 % and 15 %. Histopathological analysis of liver indicated the number of cells of karyolysis (143 % and 202 %) and pyknosis (170 % and 131 %) were respectively increased in 200 and 400 μg L-1 Tl treatments. Meanwhile, the Tl body burden and metallothionein (MT) levels in the larvae were increased with elevated Tl concentrations. The level of malondialdehyde (MDA) was increased by ~20 to 51 % in all Tl treatments and total antioxidant capacity (TAC) was decreased by ~12 % at 200 μg L-1. The activities of Na+/K+-ATPase and protease were inhibited in 200 and 400 μg L-1 Tl treatments. Moreover, the transcripts of genes (Nrf2, HO-1, TNF-α, IL-1β, IL-8, IL-10, TGF) were significantly altered. In addition, a total of 930 differentially expressed genes (DEGs) and 1549 DEGs were found in the 200 and 400 μg L-1 treatments with 458 overlapped DEGs by transcriptomic analysis. The protein digestion and absorption, ECM-receptor interaction, and complement and coagulation cascades pathways were shown to be the most significantly enriched pathways. This study helps better understand the molecular mechanisms of Tl toxicity in fish.
科研通智能强力驱动
Strongly Powered by AbleSci AI