A review of multi-class change detection for satellite remote sensing imagery

变更检测 水准点(测量) 遥感 领域(数学) 计算机科学 卫星 班级(哲学) 卫星图像 数据科学 地理 人工智能 地图学 航空航天工程 工程类 数学 纯数学
作者
Qiqi Zhu,Xi Guo,Ziqi Li,Deren Li
出处
期刊:Geo-spatial Information Science [Informa]
卷期号:: 1-15 被引量:33
标识
DOI:10.1080/10095020.2022.2128902
摘要

Change Detection (CD) provides a research basis for environmental monitoring, urban expansion and reconstruction as well as disaster assessment, by identifying the changes of ground objects in different time periods. Traditional CD focused on the Binary Change Detection (BCD), focusing solely on the change and no-change regions. Due to the dynamic progress of earth observation satellite techniques, the spatial resolution of remote sensing images continues to increase, Multi-class Change Detection (MCD) which can reflect more detailed land change has become a hot research direction in the field of CD. Although many scholars have reviewed change detection at present, most of the work still focuses on BCD. This paper focuses on the recent progress in MCD, which includes five major aspects: challenges, datasets, methods, applications and future research direction. Specifically, the background of MCD is first introduced. Then, the major difficulties and challenges in MCD are discussed and delineated. The benchmark datasets for MCD are described, and the available open datasets are listed. Moreover, MCD is further divided into three categories and the specific techniques are described, respectively. Subsequently, the common applications of MCD are described. Finally, the relevant literature in the main journals of remote sensing in the past five years are analyzed and the development and future research direction of MCD are discussed. This review will help researchers understand this field and provide a reference for the subsequent development of MCD. Our collections of MCD benchmark datasets are available at: https://zenodo.org/record/6809804#.YsfvxXZByUk
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪子完成签到,获得积分10
刚刚
1秒前
wbj0722完成签到,获得积分10
1秒前
搜集达人应助青林采纳,获得10
2秒前
3秒前
FashionBoy应助山楂丸采纳,获得10
3秒前
charlotte发布了新的文献求助10
3秒前
4秒前
酷波er应助larva采纳,获得10
4秒前
manh123发布了新的文献求助10
4秒前
4秒前
5秒前
在水一方应助charlotte采纳,获得10
7秒前
8秒前
伶俐雅柏发布了新的文献求助10
8秒前
mmm4发布了新的文献求助10
9秒前
ZhihaoZhu完成签到 ,获得积分10
9秒前
小七2022发布了新的文献求助10
10秒前
10秒前
调皮的绿真完成签到,获得积分10
10秒前
pp若若gg发布了新的文献求助10
12秒前
12秒前
颇黎完成签到,获得积分10
14秒前
科目三应助知识是芝士采纳,获得10
14秒前
15秒前
大个应助pphe采纳,获得10
15秒前
shain完成签到,获得积分10
15秒前
Jsl完成签到,获得积分10
15秒前
yar应助香蕉初瑶采纳,获得10
16秒前
larva发布了新的文献求助10
16秒前
CodeCraft应助mmm4采纳,获得10
17秒前
和谐诗双完成签到 ,获得积分10
17秒前
17秒前
彭于晏应助心灵美的冰枫采纳,获得10
18秒前
思源应助Ade阿德采纳,获得10
18秒前
文茵完成签到,获得积分10
18秒前
时泰完成签到,获得积分10
18秒前
larva完成签到,获得积分10
21秒前
ms完成签到,获得积分10
21秒前
22秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462763
求助须知:如何正确求助?哪些是违规求助? 3056257
关于积分的说明 9051348
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506717
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720