亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task learning with graph attention networks for multi-domain task-oriented dialogue systems

计算机科学 本体论 图形 词汇 人工智能 模式(遗传算法) 机器学习 理论计算机科学 语言学 哲学 认识论
作者
Meng Zeng,Lifang Wang,Zejun Jiang,Ronghan Li,Xinyu Lu,Zhongtian Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:259: 110069-110069 被引量:7
标识
DOI:10.1016/j.knosys.2022.110069
摘要

A task-oriented dialogue system (TOD) is an important application of artificial intelligence. In the past few years, works on multi-domain TODs have attracted increased research attention and have seen much progress. A main challenge of such dialogue systems is finding ways to deal with cross-domain slot sharing and dialogue act temporal planning. However, existing studies seldom consider the models’ reasoning ability over the dialogue history; moreover, existing methods overlook the structure information of the ontology schema, which makes them inadequate for handling multi-domain TODs. In this paper, we present a multi-task learning framework equipped with graph attention networks (GATs) to probe the above two challenges. In the method, we explore a dialogue state GAT consisting of a dialogue context subgraph and an ontology schema subgraph to alleviate the cross-domain slot sharing issue. We further construct a GAT-enhanced memory network using the updated nodes in the ontology subgraph to filter out the irrelevant nodes to acquire the needed dialogue states. For dialogue act temporal planning, a similar GAT and corresponding memory network are proposed to obtain fine-grained dialogue act representation. Moreover, we design an entity detection task to improve the capability of soft gate, which determines whether the generated tokens are from the vocabulary or knowledge base. In the training phase, four training tasks are combined and optimized simultaneously to facilitate the response generation process. The experimental results for automatic and human evaluations show that the proposed model achieves superior results compared to the state-of-the-art models on the MultiWOZ 2.0 and MultiWOZ 2.1 datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
43秒前
51秒前
54秒前
1分钟前
1分钟前
1分钟前
闪明火龙果完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
今后应助rebeycca采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
AliEmbark完成签到,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
抹不掉的记忆完成签到,获得积分10
4分钟前
Swear完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Endless完成签到,获得积分10
4分钟前
安详的尔岚完成签到,获得积分10
4分钟前
nenoaowu发布了新的文献求助10
4分钟前
NI完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457