Multi-task learning with graph attention networks for multi-domain task-oriented dialogue systems

计算机科学 本体论 图形 词汇 人工智能 模式(遗传算法) 机器学习 理论计算机科学 语言学 认识论 哲学
作者
Meng Zeng,Lifang Wang,Zejun Jiang,Ronghan Li,Xinyu Lu,Zhongtian Hu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:259: 110069-110069 被引量:7
标识
DOI:10.1016/j.knosys.2022.110069
摘要

A task-oriented dialogue system (TOD) is an important application of artificial intelligence. In the past few years, works on multi-domain TODs have attracted increased research attention and have seen much progress. A main challenge of such dialogue systems is finding ways to deal with cross-domain slot sharing and dialogue act temporal planning. However, existing studies seldom consider the models’ reasoning ability over the dialogue history; moreover, existing methods overlook the structure information of the ontology schema, which makes them inadequate for handling multi-domain TODs. In this paper, we present a multi-task learning framework equipped with graph attention networks (GATs) to probe the above two challenges. In the method, we explore a dialogue state GAT consisting of a dialogue context subgraph and an ontology schema subgraph to alleviate the cross-domain slot sharing issue. We further construct a GAT-enhanced memory network using the updated nodes in the ontology subgraph to filter out the irrelevant nodes to acquire the needed dialogue states. For dialogue act temporal planning, a similar GAT and corresponding memory network are proposed to obtain fine-grained dialogue act representation. Moreover, we design an entity detection task to improve the capability of soft gate, which determines whether the generated tokens are from the vocabulary or knowledge base. In the training phase, four training tasks are combined and optimized simultaneously to facilitate the response generation process. The experimental results for automatic and human evaluations show that the proposed model achieves superior results compared to the state-of-the-art models on the MultiWOZ 2.0 and MultiWOZ 2.1 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzk完成签到,获得积分10
3秒前
LaixS完成签到,获得积分10
5秒前
jojo完成签到 ,获得积分10
6秒前
夏傥完成签到,获得积分10
6秒前
吴建文完成签到 ,获得积分10
7秒前
要笑cc完成签到,获得积分10
7秒前
yi完成签到,获得积分10
9秒前
宣宣宣0733完成签到,获得积分10
9秒前
胡质斌完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助30
14秒前
跳跃的白云完成签到 ,获得积分10
14秒前
研友_Lw7OvL完成签到 ,获得积分10
15秒前
lsl完成签到 ,获得积分10
17秒前
MLJ完成签到 ,获得积分10
19秒前
老白完成签到,获得积分10
22秒前
天才小能喵完成签到 ,获得积分0
22秒前
昔昔完成签到 ,获得积分10
23秒前
26秒前
粒子耶发布了新的文献求助10
29秒前
粒子耶完成签到,获得积分10
34秒前
ZZZZZ完成签到,获得积分10
37秒前
吃小孩的妖怪完成签到 ,获得积分10
38秒前
朱比特完成签到,获得积分10
41秒前
jrzsy完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
51秒前
ff完成签到,获得积分10
53秒前
qiancib202完成签到,获得积分10
55秒前
肃肃其羽完成签到 ,获得积分10
57秒前
慕青应助tian采纳,获得10
58秒前
李爱国应助tian采纳,获得10
58秒前
酷波er应助tian采纳,获得10
58秒前
老实续完成签到 ,获得积分10
59秒前
shi0331完成签到,获得积分10
59秒前
Tonald Yang完成签到 ,获得积分20
1分钟前
wang完成签到,获得积分10
1分钟前
点点完成签到 ,获得积分10
1分钟前
研友_西门孤晴完成签到,获得积分10
1分钟前
1分钟前
hwl26完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015585
求助须知:如何正确求助?哪些是违规求助? 3555572
关于积分的说明 11318138
捐赠科研通 3288762
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015