Multi-task learning with graph attention networks for multi-domain task-oriented dialogue systems

计算机科学 本体论 图形 词汇 人工智能 模式(遗传算法) 机器学习 理论计算机科学 语言学 认识论 哲学
作者
Meng Zeng,Lifang Wang,Zejun Jiang,Ronghan Li,Xinyu Lu,Zhongtian Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:259: 110069-110069 被引量:7
标识
DOI:10.1016/j.knosys.2022.110069
摘要

A task-oriented dialogue system (TOD) is an important application of artificial intelligence. In the past few years, works on multi-domain TODs have attracted increased research attention and have seen much progress. A main challenge of such dialogue systems is finding ways to deal with cross-domain slot sharing and dialogue act temporal planning. However, existing studies seldom consider the models’ reasoning ability over the dialogue history; moreover, existing methods overlook the structure information of the ontology schema, which makes them inadequate for handling multi-domain TODs. In this paper, we present a multi-task learning framework equipped with graph attention networks (GATs) to probe the above two challenges. In the method, we explore a dialogue state GAT consisting of a dialogue context subgraph and an ontology schema subgraph to alleviate the cross-domain slot sharing issue. We further construct a GAT-enhanced memory network using the updated nodes in the ontology subgraph to filter out the irrelevant nodes to acquire the needed dialogue states. For dialogue act temporal planning, a similar GAT and corresponding memory network are proposed to obtain fine-grained dialogue act representation. Moreover, we design an entity detection task to improve the capability of soft gate, which determines whether the generated tokens are from the vocabulary or knowledge base. In the training phase, four training tasks are combined and optimized simultaneously to facilitate the response generation process. The experimental results for automatic and human evaluations show that the proposed model achieves superior results compared to the state-of-the-art models on the MultiWOZ 2.0 and MultiWOZ 2.1 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志达完成签到,获得积分10
刚刚
1秒前
安静的虔关注了科研通微信公众号
2秒前
3秒前
小尤菜完成签到,获得积分10
3秒前
汉堡包应助一叶扁舟采纳,获得10
3秒前
隐形曼青应助baby的跑男采纳,获得10
3秒前
18062677029完成签到 ,获得积分10
3秒前
小小果妈发布了新的文献求助10
3秒前
CA完成签到,获得积分10
3秒前
kmkz发布了新的文献求助10
5秒前
6秒前
Hello应助虎虎虎采纳,获得10
6秒前
小马甲应助流流124141采纳,获得10
6秒前
6秒前
所所应助我是张铁柱·采纳,获得10
7秒前
所所应助小尤菜采纳,获得10
7秒前
7秒前
Q清风慕竹完成签到,获得积分10
8秒前
8秒前
典雅的静完成签到,获得积分10
8秒前
8秒前
风中的玲发布了新的文献求助10
9秒前
月儿完成签到,获得积分10
10秒前
归海海之发布了新的文献求助10
11秒前
云汐儿应助科研通管家采纳,获得10
11秒前
敬老院N号应助科研通管家采纳,获得20
11秒前
搜集达人应助程大学采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135173
求助须知:如何正确求助?哪些是违规求助? 2786162
关于积分的说明 7775843
捐赠科研通 2442066
什么是DOI,文献DOI怎么找? 1298380
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847