Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis

医学 肝硬化 内科学 门脉高压 心脏病学
作者
Jiří Reiniš,Oleksandr Petrenko,Benedikt Simbrunner,Benedikt Hofer,Filippo Schepis,M. Scoppettuolo,Dario Saltini,Federica Indulti,T. Guasconi,Agustı́n Albillos,Luís Téllez,Càndid Villanueva,Anna Brujats,Juan Carlos García‐Pagán,Valeria Pérez‐Campuzano,Virginia Hernández‐Gea,Pierre‐Emmanuel Rautou,Lucile Moga,Thomas Vanwolleghem,Wilhelmus J. Kwanten
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:78 (2): 390-400 被引量:28
标识
DOI:10.1016/j.jhep.2022.09.012
摘要

Background & Aims

In individuals with compensated advanced chronic liver disease (cACLD), the severity of portal hypertension (PH) determines the risk of decompensation. Invasive measurement of the hepatic venous pressure gradient (HVPG) is the diagnostic gold standard for PH. We evaluated the utility of machine learning models (MLMs) based on standard laboratory parameters to predict the severity of PH in individuals with cACLD.

Methods

A detailed laboratory workup of individuals with cACLD recruited from the Vienna cohort (NCT03267615) was utilised to predict clinically significant portal hypertension (CSPH, i.e., HVPG ≥10 mmHg) and severe PH (i.e., HVPG ≥16 mmHg). The MLMs were then evaluated in individual external datasets and optimised in the merged cohort.

Results

Among 1,232 participants with cACLD, the prevalence of CSPH/severe PH was similar in the Vienna (n = 163, 67.4%/35.0%) and validation (n = 1,069, 70.3%/34.7%) cohorts. The MLMs were based on 3 (3P: platelet count, bilirubin, international normalised ratio) or 5 (5P: +cholinesterase, +gamma-glutamyl transferase, +activated partial thromboplastin time replacing international normalised ratio) laboratory parameters. The MLMs performed robustly in the Vienna cohort. 5P-MLM had the best AUCs for CSPH (0.813) and severe PH (0.887) and compared favourably to liver stiffness measurement (AUC: 0.808). Their performance in external validation datasets was heterogeneous (AUCs: 0.589-0.887). Training on the merged cohort optimised model performance for CSPH (AUCs for 3P and 5P: 0.775 and 0.789, respectively) and severe PH (0.737 and 0.828, respectively).

Conclusions

Internally trained MLMs reliably predicted PH severity in the Vienna cACLD cohort but exhibited heterogeneous results on external validation. The proposed 3P/5P online tool can reliably identify individuals with CSPH or severe PH, who are thus at risk of hepatic decompensation.

Impact and implications

We used machine learning models based on widely available laboratory parameters to develop a non-invasive model to predict the severity of portal hypertension in individuals with compensated cirrhosis, who currently require invasive measurement of hepatic venous pressure gradient. We validated our findings in a large multicentre cohort of individuals with advanced chronic liver disease (cACLD) of any cause. Finally, we provide a readily available online calculator, based on 3 (platelet count, bilirubin, international normalised ratio) or 5 (platelet count, bilirubin, activated partial thromboplastin time, gamma-glutamyltransferase, choline-esterase) widely available laboratory parameters, that clinicians can use to predict the likelihood of their patients with cACLD having clinically significant or severe portal hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yusuf发布了新的文献求助10
2秒前
3秒前
totoro完成签到,获得积分10
3秒前
3秒前
大个应助等等小ur采纳,获得10
4秒前
4秒前
dr1nk完成签到,获得积分10
6秒前
zshhay完成签到,获得积分10
6秒前
李健的小迷弟应助西红柿采纳,获得10
7秒前
8秒前
8秒前
9秒前
单薄店员发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
搜集达人应助无语的香薇采纳,获得10
12秒前
luckykk发布了新的文献求助10
12秒前
梧桐应助cvvvvv采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
dong应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
月亮代表我的心完成签到,获得积分10
14秒前
所所应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
effort完成签到,获得积分10
14秒前
852应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
科目三应助单薄店员采纳,获得10
15秒前
15秒前
16秒前
Lydia发布了新的文献求助10
16秒前
等等小ur完成签到,获得积分10
17秒前
金枪鱼子完成签到,获得积分10
17秒前
17秒前
qqqq发布了新的文献求助10
17秒前
19秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470