Assessment of portal hypertension severity using machine learning models in patients with compensated cirrhosis

医学 肝硬化 内科学 门脉高压 心脏病学
作者
Jiří Reiniš,Oleksandr Petrenko,Benedikt Simbrunner,Benedikt Hofer,Filippo Schepis,M. Scoppettuolo,Dario Saltini,Federica Indulti,T. Guasconi,Agustı́n Albillos,Luís Téllez,Càndid Villanueva,Anna Brujats,Juan Carlos García‐Pagán,Valeria Pérez‐Campuzano,Virginia Hernández‐Gea,Pierre‐Emmanuel Rautou,Lucile Moga,Thomas Vanwolleghem,Wilhelmus J. Kwanten
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:78 (2): 390-400 被引量:31
标识
DOI:10.1016/j.jhep.2022.09.012
摘要

Background & Aims

In individuals with compensated advanced chronic liver disease (cACLD), the severity of portal hypertension (PH) determines the risk of decompensation. Invasive measurement of the hepatic venous pressure gradient (HVPG) is the diagnostic gold standard for PH. We evaluated the utility of machine learning models (MLMs) based on standard laboratory parameters to predict the severity of PH in individuals with cACLD.

Methods

A detailed laboratory workup of individuals with cACLD recruited from the Vienna cohort (NCT03267615) was utilised to predict clinically significant portal hypertension (CSPH, i.e., HVPG ≥10 mmHg) and severe PH (i.e., HVPG ≥16 mmHg). The MLMs were then evaluated in individual external datasets and optimised in the merged cohort.

Results

Among 1,232 participants with cACLD, the prevalence of CSPH/severe PH was similar in the Vienna (n = 163, 67.4%/35.0%) and validation (n = 1,069, 70.3%/34.7%) cohorts. The MLMs were based on 3 (3P: platelet count, bilirubin, international normalised ratio) or 5 (5P: +cholinesterase, +gamma-glutamyl transferase, +activated partial thromboplastin time replacing international normalised ratio) laboratory parameters. The MLMs performed robustly in the Vienna cohort. 5P-MLM had the best AUCs for CSPH (0.813) and severe PH (0.887) and compared favourably to liver stiffness measurement (AUC: 0.808). Their performance in external validation datasets was heterogeneous (AUCs: 0.589-0.887). Training on the merged cohort optimised model performance for CSPH (AUCs for 3P and 5P: 0.775 and 0.789, respectively) and severe PH (0.737 and 0.828, respectively).

Conclusions

Internally trained MLMs reliably predicted PH severity in the Vienna cACLD cohort but exhibited heterogeneous results on external validation. The proposed 3P/5P online tool can reliably identify individuals with CSPH or severe PH, who are thus at risk of hepatic decompensation.

Impact and implications

We used machine learning models based on widely available laboratory parameters to develop a non-invasive model to predict the severity of portal hypertension in individuals with compensated cirrhosis, who currently require invasive measurement of hepatic venous pressure gradient. We validated our findings in a large multicentre cohort of individuals with advanced chronic liver disease (cACLD) of any cause. Finally, we provide a readily available online calculator, based on 3 (platelet count, bilirubin, international normalised ratio) or 5 (platelet count, bilirubin, activated partial thromboplastin time, gamma-glutamyltransferase, choline-esterase) widely available laboratory parameters, that clinicians can use to predict the likelihood of their patients with cACLD having clinically significant or severe portal hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
komo发布了新的文献求助10
刚刚
锤你发布了新的文献求助10
1秒前
正直书蕾完成签到,获得积分20
3秒前
RON发布了新的文献求助10
4秒前
柳行天完成签到 ,获得积分10
5秒前
科研通AI6应助奕师采纳,获得10
5秒前
5秒前
赵小坤堃发布了新的文献求助20
5秒前
安好完成签到 ,获得积分10
5秒前
6秒前
zcl应助江丹采纳,获得20
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
Zx_1993应助3ilence采纳,获得10
8秒前
安好关注了科研通微信公众号
9秒前
9秒前
默默无闻的打工仔完成签到,获得积分20
9秒前
9秒前
wmf完成签到 ,获得积分10
10秒前
111完成签到,获得积分10
11秒前
小M发布了新的文献求助10
11秒前
Orange应助唠叨的中道采纳,获得10
12秒前
xiaobei发布了新的文献求助10
13秒前
加减乘除发布了新的文献求助10
13秒前
锤你完成签到,获得积分10
13秒前
尉迟希望应助Monsters采纳,获得10
13秒前
komo完成签到,获得积分10
13秒前
顾矜应助温水云采纳,获得10
14秒前
wtt0109完成签到,获得积分10
14秒前
17秒前
18秒前
七月发布了新的文献求助10
20秒前
21秒前
打打应助Ade采纳,获得10
22秒前
彳亍1117应助chunjianghua采纳,获得10
22秒前
彳亍1117应助chunjianghua采纳,获得10
22秒前
浮游应助chunjianghua采纳,获得10
22秒前
彳亍1117应助chunjianghua采纳,获得10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073345
求助须知:如何正确求助?哪些是违规求助? 4293480
关于积分的说明 13378526
捐赠科研通 4114894
什么是DOI,文献DOI怎么找? 2253241
邀请新用户注册赠送积分活动 1258048
关于科研通互助平台的介绍 1190881