计算机科学
延迟(音频)
卷积神经网络
人工智能
深层神经网络
面子(社会学概念)
移动设备
目标检测
深度学习
建筑
班级(哲学)
人工神经网络
比例(比率)
航程(航空)
机器学习
模式识别(心理学)
工程类
电信
航空航天工程
社会科学
视觉艺术
社会学
艺术
物理
操作系统
量子力学
作者
Andrew Howard,Menglong Zhu,Bin Chen,Dmitry Kalenichenko,Weijun Wang,Tobias Weyand,Marco Andreetto,Hartwig Adam
出处
期刊:Cornell University - arXiv
日期:2017-04-16
被引量:248
标识
DOI:10.48550/arxiv.1704.04861
摘要
We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
科研通智能强力驱动
Strongly Powered by AbleSci AI