亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

计算机科学 延迟(音频) 卷积神经网络 人工智能 深层神经网络 面子(社会学概念) 移动设备 目标检测 深度学习 建筑 班级(哲学) 简单(哲学) 比例(比率) 航程(航空) 机器学习 模式识别(心理学) 工程类 地图学 地理 电信 考古 航空航天工程 社会学 哲学 操作系统 认识论 社会科学
作者
Andrew Howard,Menglong Zhu,Bo Chen,Dmitry Kalenichenko,Weijun Wang,Tobias Weyand,Marco Andreetto,Hartwig Adam
出处
期刊:Cornell University - arXiv 被引量:12800
标识
DOI:10.48550/arxiv.1704.04861
摘要

We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
HOU完成签到,获得积分10
11秒前
11秒前
16秒前
俏皮元珊完成签到 ,获得积分10
17秒前
oleskarabach发布了新的文献求助10
18秒前
33秒前
oleskarabach发布了新的文献求助10
1分钟前
Charlie完成签到 ,获得积分10
1分钟前
Willy完成签到,获得积分10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
12591发布了新的文献求助10
1分钟前
12591完成签到,获得积分10
1分钟前
xiw发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
急求大佬帮助的科研小白完成签到,获得积分10
2分钟前
SnnerX完成签到 ,获得积分10
2分钟前
谦让飞飞发布了新的文献求助10
2分钟前
morena应助Clementine采纳,获得10
2分钟前
zzz完成签到 ,获得积分10
2分钟前
深情安青应助lulu采纳,获得10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
2分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
2分钟前
JamesPei应助琅琊为刃采纳,获得10
2分钟前
2分钟前
感动的吐司完成签到 ,获得积分10
2分钟前
田様应助zeran采纳,获得10
2分钟前
wop111发布了新的文献求助10
2分钟前
3分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
zeran发布了新的文献求助10
3分钟前
wop111完成签到,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714403
求助须知:如何正确求助?哪些是违规求助? 5223641
关于积分的说明 15273228
捐赠科研通 4865850
什么是DOI,文献DOI怎么找? 2612433
邀请新用户注册赠送积分活动 1562512
关于科研通互助平台的介绍 1519787