Action recognition based on RGB and skeleton data sets: A survey

计算机科学 人工智能 背景(考古学) 机器学习 动作(物理) 三维单目标识别 动作识别 模式识别(心理学) 视觉对象识别的认知神经科学 特征提取 量子力学 生物 物理 古生物学 班级(哲学)
作者
Rujing Yue,Zhiqiang Tian,Shaoyi Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:512: 287-306 被引量:30
标识
DOI:10.1016/j.neucom.2022.09.071
摘要

Action recognition is a major branch of computer vision research. As a widely used technology, action recognition has been applied to human–computer interaction, intelligent pension, and intelligent transportation system. Because of the explosive growth of action recognition related methods, the performance of action recognition on many difficult data sets has improved significantly. In terms of the different data sets used for action recognition, action recognition can mainly be divided into RGB-based action recognition method and skeleton-based action recognition method. The former method can take advantage of the prior knowledge of image recognition. However, it has high requirements for computing power and storage ability, and it is difficult to avoid the influence of irrelevant background and illumination. In contrast, the latter method’s calculation amount and required storage space are reduced significantly. However, it lacks context information that is useful for action recognition. This review provides a comprehensive description of these two methods, covering the milestone algorithms, the state-of-the-art algorithms, the commonly used data sets, evaluation metrics, challenges, and promising future directions. So far as we know, this work is the first survey covering traditional methods of action recognition, RGB-based end-to-end action recognition method, pose estimation, and skeleton-based action recognition in one review. This survey aims to help scholars who study action recognition technology to systematically learn action recognition technology, select data sets, understand current challenges, and choose promising future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ly发布了新的文献求助10
1秒前
4秒前
小Q完成签到,获得积分10
4秒前
唐明穆完成签到 ,获得积分10
4秒前
无辜的猎豹完成签到,获得积分10
5秒前
5秒前
彩虹天堂完成签到,获得积分10
6秒前
6秒前
Orange应助ly采纳,获得10
7秒前
8秒前
8秒前
9秒前
可乐完成签到 ,获得积分10
9秒前
11秒前
小茹发布了新的文献求助10
11秒前
李秋静发布了新的文献求助20
12秒前
dzll发布了新的文献求助10
14秒前
鲤鱼十三发布了新的文献求助10
15秒前
有人应助佳远采纳,获得10
15秒前
16秒前
桃桃大王完成签到,获得积分10
17秒前
鲤鱼十三完成签到,获得积分10
20秒前
情怀应助于生有你采纳,获得10
20秒前
20秒前
20秒前
科研通AI2S应助温柔的代曼采纳,获得10
21秒前
21秒前
dzll完成签到,获得积分10
21秒前
懒洋洋完成签到,获得积分20
25秒前
小茹完成签到,获得积分10
25秒前
胡可发布了新的文献求助10
25秒前
冰可乐发布了新的文献求助10
26秒前
wxy21完成签到,获得积分10
26秒前
26秒前
周一斩发布了新的文献求助20
28秒前
zyzhnu完成签到,获得积分10
29秒前
彩虹天堂关注了科研通微信公众号
30秒前
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140405
求助须知:如何正确求助?哪些是违规求助? 2791283
关于积分的说明 7798359
捐赠科研通 2447650
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194