A Fast-Warning Method of Financial Risk Behavior Based on BP Neural Network

人工神经网络 预警系统 正确性 业务 企业风险管理 代理(哲学) 财务 危害 金融危机 控制(管理) 计算机科学 风险管理 风险分析(工程) 精算学 人工智能 经济 算法 电信 哲学 化学 有机化学 认识论 宏观经济学
作者
Yang Qun,Zhengyan Xi
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (01) 被引量:1
标识
DOI:10.1142/s0218126624500087
摘要

With the speedy development of economy, there are many issues in business enterprise finance, and organization finance is going through large risks. With more and more complicated market environment, the uncertainty danger of business enterprise operation intensifies, and economic crises happen frequently. The monetary disaster of a company regularly shows that there can also be a complete crisis. Once the organization is deeply in economic crisis, it can also now not be capable to make certain the ordinary capital chain of the enterprise, and in serious cases, it may also have an effect on the sustainable operation of the agency or even make the employer bankrupt and liquidate. Therefore, we have to set up a best financial catastrophe early warning model to prevent and control the occurrence of economic disaster risk. BP neural network can, quite in shape nonlinear feature relationship, have true gaining knowledge of adaptability, excessive parallel computing and statistics processing ability. In view of the actual state of affairs of commercial enterprise, business enterprise and economic risk, the BP neural community algorithm is used to predict agency financial risk and a hazard prediction model in particular primarily based on BP neural community is established. The simulation consequences exhibit that the accuracy and correctness of economic hazard conduct early warning primarily based on BP neural network are 91.51% and 95.28%, respectively. It is proved that the fast-warning approach of economic threat that is conducted primarily based on BP neural network has excessively taken a look at the accuracy and robust cognizance ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木棉发布了新的文献求助30
刚刚
dadad完成签到,获得积分10
刚刚
1秒前
丁泓骄发布了新的文献求助10
1秒前
sci来来来发布了新的文献求助10
2秒前
3秒前
太叔夜南完成签到,获得积分10
3秒前
zm发布了新的文献求助10
4秒前
xiaoxiao完成签到,获得积分10
4秒前
你晖哥完成签到,获得积分10
4秒前
Ning发布了新的文献求助10
4秒前
上官若男应助Ijaz采纳,获得30
4秒前
5秒前
RR猫发布了新的文献求助10
6秒前
6秒前
小蘑菇完成签到,获得积分10
6秒前
7秒前
斯文败类应助zhou采纳,获得10
7秒前
华仔应助笑点低的雪青采纳,获得30
8秒前
8秒前
9秒前
ddd完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
老阳发布了新的文献求助10
11秒前
11秒前
wjx发布了新的文献求助10
11秒前
领导范儿应助ruby采纳,获得10
12秒前
汉堡包应助Never stall采纳,获得10
12秒前
顺利毕业完成签到,获得积分10
13秒前
清森发布了新的文献求助10
13秒前
14秒前
小博小博完成签到 ,获得积分10
16秒前
橡皮泥发布了新的文献求助10
16秒前
17秒前
17秒前
沉静的画板完成签到 ,获得积分10
18秒前
英姑应助罗沫沫采纳,获得10
18秒前
RR猫完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512750
求助须知:如何正确求助?哪些是违规求助? 3095108
关于积分的说明 9226249
捐赠科研通 2789937
什么是DOI,文献DOI怎么找? 1530991
邀请新用户注册赠送积分活动 711247
科研通“疑难数据库(出版商)”最低求助积分说明 706673