Highly efficient near-infrared electrochemiluminescence resonance energy transfer system for biosensing: Nonmetallic plasmon Mediated well-matched energy donor-acceptor pair

电化学发光 表面等离子共振 材料科学 接受者 生物传感器 纳米技术 光电子学 纳米颗粒 化学 检出限 凝聚态物理 色谱法 物理
作者
Wei Meng,Xiaojiao Du,Ding Jiang,Yude Zhang,Xueling Shan,Wenchang Wang,Hiroshi Shiigi,Zhidong Chen
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:236: 115420-115420 被引量:6
标识
DOI:10.1016/j.bios.2023.115420
摘要

Herein, a well-matched energy donor-acceptor pair strategy was designed to construct highly efficient NIR ECL-RET system. In detail, an ECL amplification system consisting of SnS2 quantum dots decorated Ti3C2 MXene nanocomposites (SnS2 QDs-Ti3C2) as the energy donor were developed via a one-pot method, and the nanocomposites exhibited highly efficient NIR ECL emission due to the surface-defect effect generated by the oxygen-containing functional groups in MXene. Nonmetallic plasmon hydrated defective tungsten oxide nanosheets (dWO3•H2O) were utilized as energy acceptors because of its strong surface plasmon resonance effect in Vis-NIR absorption range. Compared with non-defective tungsten oxide hydrate nanosheets (WO3•H2O), the overlapping area between ECL spectrum of SnS2 QDs-Ti3C2 and UV-vis spectrum of dWO3•H2O was increased by 2.1 times, and the results showed that more efficient quenching effect was obtained. As a proof of concept, tetracycline (TCN) aptamer and its complementary chain were served as a bridge to connect the energy donor and acceptor, achieving the successful construction of NIR ECL-RET aptasensor. The as-fabricated ECL sensing platform exhibited a low detection limit of 6.2 fM (S/N = 3) within a wide linear range from 10 fM to 10 μM. Besides, the NIR ECL-RET aptasensor also showed excellent stability, reproducibility and selectivity, providing a promising tool to detect TCN in real samples. This strategy offered a universal and effective method in constructing highly efficient NIR ECL-RET system for developing rapid, sensitive and accurate biological detection platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意爆米花完成签到 ,获得积分10
刚刚
旋转门完成签到,获得积分20
2秒前
同福发布了新的文献求助10
3秒前
apple发布了新的文献求助30
3秒前
李健应助枫叶采纳,获得10
3秒前
lucylee完成签到,获得积分10
3秒前
彩色宛筠完成签到,获得积分10
7秒前
yinyin完成签到 ,获得积分10
9秒前
9秒前
玉米完成签到,获得积分10
10秒前
斯文败类应助爱德华兹俊采纳,获得10
10秒前
上官若男应助云_123采纳,获得10
10秒前
欢呼的凡梦完成签到,获得积分10
12秒前
12秒前
乐乐应助siwei采纳,获得10
13秒前
香蕉觅云应助李新悦采纳,获得50
14秒前
14秒前
14秒前
乐园发布了新的文献求助200
15秒前
专注的飞瑶完成签到 ,获得积分10
15秒前
木雨亦潇潇完成签到,获得积分10
17秒前
Ava应助菜菜Cc采纳,获得10
17秒前
mzy发布了新的文献求助10
17秒前
18秒前
小龙完成签到,获得积分10
18秒前
bkagyin应助电催化托采纳,获得10
18秒前
Saven完成签到,获得积分10
18秒前
枫叶发布了新的文献求助10
19秒前
20秒前
小章完成签到,获得积分10
20秒前
hxx完成签到,获得积分10
21秒前
云_123发布了新的文献求助10
22秒前
siwei发布了新的文献求助10
24秒前
冷静的哈密瓜完成签到,获得积分10
25秒前
酷波er应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825