A neural network for evaluating the concentration of leaked gas clouds detected by TDLAS at oil and gas stations

可调谐激光吸收光谱技术 激光器 泄漏(经济) 探测器 可操作性 计算流体力学 风速 化学 环境科学 分析化学(期刊) 机械 计算机科学 可调谐激光器 光学 物理 气象学 色谱法 软件工程 宏观经济学 经济
作者
Fei Xiao,Jianfeng Li,Xiaochun Zheng,Jingjian Liu,Min Luo,Jiaqiang Jing
出处
期刊:Petroleum Science and Technology [Informa]
卷期号:42 (24): 3755-3774 被引量:2
标识
DOI:10.1080/10916466.2023.2209120
摘要

Due to the significant advantages of methane sensitivity and area-type leakage detection, tunable diode laser absorption spectroscopy (TDLAS) gas detection has been promoted as an effective method for microleakage monitoring in oil and gas stations. However, the output of the TDLAS detector is the integral concentration (IC). Based on the relevant research, the alarm threshold and risk are assessed via the gas concentration rather than the IC. How to evaluate the concentration of leaked gas clouds based on IC from TDLAS detectors is still a challenge. To address this problem, the characteristics of IC and the influence of the laser path, wind speed and leakage rate were studied via computational fluid dynamics (CFD). A neural network classification model (NNCM) was proposed to obtain the probability distribution of the maximal concentration along the laser path (Cmax). The results indicated that the IC is strongly correlated with the Cmax. Considering the accuracy and operability, the NNCM with input features of IC, wind speed and angle of laser path was selected. Field tests showed that the developed model achieved the concentration evaluation of leaked gas clouds. Additionally, the NNCM can also quantify the uncertainty of the results, which avoids misjudgments caused by deviations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助英勇小霸王采纳,获得10
刚刚
刚刚
刚刚
英俊的铭应助qazpsy采纳,获得10
1秒前
1秒前
1秒前
Akim应助优美电脑采纳,获得10
2秒前
天天快乐应助iu采纳,获得10
3秒前
3秒前
fsz发布了新的文献求助10
3秒前
4秒前
lily完成签到,获得积分10
5秒前
achilles发布了新的文献求助10
5秒前
贤来无事发布了新的文献求助10
5秒前
失眠傥发布了新的文献求助30
6秒前
NameSL完成签到,获得积分10
6秒前
hangli完成签到,获得积分10
6秒前
7秒前
8秒前
顾志成发布了新的文献求助30
8秒前
情怀应助科研通管家采纳,获得10
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
lily发布了新的文献求助10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
迟大猫应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
9秒前
贰鸟应助科研通管家采纳,获得20
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得30
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187