Detection of Simultaneous Bearing Faults Fusing Cross Correlation With Multikernel SVM

方位(导航) 计算机科学 支持向量机 故障检测与隔离 噪音(视频) 相关系数 时域 模式识别(心理学) 控制理论(社会学) 人工智能 机器学习 执行机构 计算机视觉 控制(管理) 图像(数学)
作者
Anadi Biswas,Susanta Ray,Debangshu Dey,Sugata Munshi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (13): 14418-14427 被引量:5
标识
DOI:10.1109/jsen.2023.3276022
摘要

Detection of simultaneous bearing faults for condition monitoring (CM) of bearings using time-domain analysis is quite challenging and open area, particularly in noisy environment. This work presents a new scheme for simultaneous bearing fault detection using vibration signal (VS), in cases where single-point localized bearing fault and multiple-point compound fault (MPCF) coexist. Bearings of a 415-V, 3-kW, three-phase squirrel cage induction motor (SCIM) have been used for data collection, while the loading arrangement is done using a 110-V, 4-kW dc generator connected with a load box and coupled to the motor. A cross correlation (CC)-based time-domain feature extraction approach has been introduced. The neighborhood component analysis (NCA) technique has been applied to the CC-based features to reduce the complexity of the proposed model. Furthermore, the selected features have been fed into a multikernel support vector machine (MKSVM) to classify simultaneous bearing faults. This method has also been tested on signals contaminated with white Gaussian noise to verify reliability in the industrial environment. It is found that with only five features, the proposed model yields 100% classification performance metrics for raw signal (RS) and under noisy environments with a signal-to-noise ratio (SNR) of 20–50 dB for both full load (FL) and no-load (NL) conditions. In contrast, at 10-dB SNR value, performance decreases slightly, still an overall classification performance metric of more than 99% is achieved by this method. Furthermore, this method has enhanced performance when compared to earlier studies with publicly available databases for localized bearing failure identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingutaimi完成签到,获得积分10
1秒前
orixero应助杰尼龟采纳,获得10
1秒前
万能图书馆应助andrewmed采纳,获得10
1秒前
灵巧代柔完成签到,获得积分10
1秒前
211发布了新的文献求助10
2秒前
闪闪怀柔完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
xl完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
aaa发布了新的文献求助10
5秒前
5秒前
搜集达人应助笑点低的达采纳,获得10
5秒前
5秒前
暖阳发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
思源应助净心采纳,获得10
8秒前
Lylin发布了新的文献求助10
8秒前
9秒前
十七完成签到 ,获得积分10
9秒前
RR发布了新的文献求助10
9秒前
www发布了新的文献求助20
9秒前
9秒前
123发布了新的文献求助10
9秒前
10秒前
yznfly应助Criminology34采纳,获得300
10秒前
10秒前
yu发布了新的文献求助10
10秒前
11发布了新的文献求助200
11秒前
浮游应助aaa采纳,获得10
11秒前
lyejxusgh发布了新的文献求助10
11秒前
奥丁蒂法发布了新的文献求助10
12秒前
12秒前
WILD发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684435
求助须知:如何正确求助?哪些是违规求助? 5036377
关于积分的说明 15184096
捐赠科研通 4843719
什么是DOI,文献DOI怎么找? 2596836
邀请新用户注册赠送积分活动 1549483
关于科研通互助平台的介绍 1507999