Detection of Simultaneous Bearing Faults Fusing Cross Correlation With Multikernel SVM

方位(导航) 计算机科学 支持向量机 故障检测与隔离 噪音(视频) 相关系数 时域 模式识别(心理学) 控制理论(社会学) 人工智能 机器学习 执行机构 计算机视觉 控制(管理) 图像(数学)
作者
Anadi Biswas,Susanta Ray,Debangshu Dey,Sugata Munshi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (13): 14418-14427 被引量:5
标识
DOI:10.1109/jsen.2023.3276022
摘要

Detection of simultaneous bearing faults for condition monitoring (CM) of bearings using time-domain analysis is quite challenging and open area, particularly in noisy environment. This work presents a new scheme for simultaneous bearing fault detection using vibration signal (VS), in cases where single-point localized bearing fault and multiple-point compound fault (MPCF) coexist. Bearings of a 415-V, 3-kW, three-phase squirrel cage induction motor (SCIM) have been used for data collection, while the loading arrangement is done using a 110-V, 4-kW dc generator connected with a load box and coupled to the motor. A cross correlation (CC)-based time-domain feature extraction approach has been introduced. The neighborhood component analysis (NCA) technique has been applied to the CC-based features to reduce the complexity of the proposed model. Furthermore, the selected features have been fed into a multikernel support vector machine (MKSVM) to classify simultaneous bearing faults. This method has also been tested on signals contaminated with white Gaussian noise to verify reliability in the industrial environment. It is found that with only five features, the proposed model yields 100% classification performance metrics for raw signal (RS) and under noisy environments with a signal-to-noise ratio (SNR) of 20–50 dB for both full load (FL) and no-load (NL) conditions. In contrast, at 10-dB SNR value, performance decreases slightly, still an overall classification performance metric of more than 99% is achieved by this method. Furthermore, this method has enhanced performance when compared to earlier studies with publicly available databases for localized bearing failure identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
yznfly应助懵懂的采梦采纳,获得50
1秒前
1秒前
loser发布了新的文献求助10
1秒前
gapsong完成签到,获得积分10
2秒前
眼睛大的傲菡完成签到,获得积分10
2秒前
lyx完成签到,获得积分10
2秒前
2秒前
2秒前
ding应助朱小燕采纳,获得10
2秒前
347u完成签到,获得积分10
2秒前
young完成签到,获得积分10
3秒前
3秒前
Nancy-nan完成签到,获得积分10
3秒前
学术羊发布了新的文献求助10
3秒前
GWT完成签到,获得积分10
3秒前
3秒前
内少成完成签到,获得积分20
5秒前
苏玺完成签到,获得积分10
5秒前
5秒前
5秒前
毛毛完成签到,获得积分10
5秒前
神勇初瑶发布了新的文献求助10
6秒前
小京子发布了新的文献求助20
6秒前
ts发布了新的文献求助10
6秒前
彩色的夏青完成签到,获得积分20
6秒前
xxx发布了新的文献求助10
7秒前
347u发布了新的文献求助10
7秒前
熏同学完成签到,获得积分10
7秒前
valith完成签到,获得积分20
7秒前
Linda00发布了新的文献求助10
7秒前
7秒前
爆米花应助天之骄姿001采纳,获得10
7秒前
研友_VZG7GZ应助GWT采纳,获得10
8秒前
guoguo发布了新的文献求助10
8秒前
Lucas应助jieen采纳,获得10
9秒前
Lucas应助晴朗采纳,获得10
9秒前
着急的从筠完成签到,获得积分20
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707637
求助须知:如何正确求助?哪些是违规求助? 5185201
关于积分的说明 15251349
捐赠科研通 4860931
什么是DOI,文献DOI怎么找? 2609076
邀请新用户注册赠送积分活动 1559819
关于科研通互助平台的介绍 1517579