已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Iterative Re-weighted Least Squares Gaussian Beam Migration and Velocity Inversion in the Image Domain based on Point Spread Functions

黑森矩阵 振幅 算法 计算机科学 反演(地质) 最小二乘函数近似 高斯分布 数学 光学 地质学 物理 应用数学 量子力学 统计 构造盆地 古生物学 估计员
作者
Weiguo Duan,Weijian Mao,Xiaomei Shi,Qingchen Zhang,Wei Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3274212
摘要

Amplitude-preserving migration is very important for reservoir characterization, which can faithfully provide information on the strength of the reflectors. However, conventional migration algorithms do not compensate for variable illumination effects and can hardly obtain true amplitudes of medium parameter. Least squares migration (LSM) is an effective method to address this issue. Unfortunately, there is a key problem with LSM methods: most LSM methods only consider illumination compensation but not consider the accuracy of migration velocity model. The accuracy of the migration velocity model directly affects the quality of migrated images. Moreover, changes in velocity are more indicative of reservoir properties than reflectivity. Therefore, it is necessary to incorporate velocity estimation into migration imaging to realize joint inversions. Based on these facts, we present an iterative re-weighted LSM method by approximating the local Hessian using point spread functions. Then, we related the LSM results to the scattering potential, simultaneously achieving velocity update with illumination compensation. Based on the gradually changing characteristics of rock properties, we adopted a sparse derivative constraint rather than requiring the result to be sparse. Consequently, this processing caused the results to contain broader bandwidths, giving the image a more continuous and textured appearance. Next, we evaluated the proposed method using the Marmousi2 model. The results had higher resolution and a more reliable amplitude than the initial migration images. Hence, we efficaciously completed the velocity model update, with our method achieving encouraging results under both relatively accurate migration velocity and highly smoothed migration velocity model tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水若琳发布了新的文献求助10
3秒前
小黑完成签到,获得积分10
6秒前
7秒前
壮观的谷冬完成签到 ,获得积分0
7秒前
霸气的思柔完成签到,获得积分10
8秒前
aliu完成签到,获得积分10
9秒前
月儿完成签到 ,获得积分10
10秒前
牟翎完成签到,获得积分10
12秒前
liboshi完成签到,获得积分10
12秒前
霜鸣发布了新的文献求助10
14秒前
aliu发布了新的文献求助10
14秒前
andrele发布了新的文献求助10
17秒前
王子娇完成签到 ,获得积分10
18秒前
19秒前
传奇3应助霜鸣采纳,获得10
20秒前
hellokitty完成签到,获得积分10
20秒前
24秒前
852应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
Rondab应助科研通管家采纳,获得10
24秒前
Rondab应助科研通管家采纳,获得10
24秒前
24秒前
wanci应助科研通管家采纳,获得30
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
bxxxxx应助科研通管家采纳,获得30
24秒前
搜集达人应助科研通管家采纳,获得30
24秒前
24秒前
生动丑应助科研通管家采纳,获得10
24秒前
zp6666tql完成签到 ,获得积分10
26秒前
李健的小迷弟应助maleo采纳,获得30
26秒前
LXY发布了新的文献求助10
27秒前
leyellows完成签到 ,获得积分10
28秒前
翟大有完成签到 ,获得积分0
28秒前
花花521完成签到,获得积分10
31秒前
欧阳完成签到 ,获得积分10
31秒前
傲娇的棉花糖完成签到 ,获得积分10
34秒前
苏小北完成签到 ,获得积分10
35秒前
shweah2003完成签到,获得积分0
37秒前
Owen应助怡然的迎波采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216