Iterative Re-weighted Least Squares Gaussian Beam Migration and Velocity Inversion in the Image Domain based on Point Spread Functions

黑森矩阵 振幅 算法 计算机科学 反演(地质) 最小二乘函数近似 高斯分布 数学 光学 地质学 物理 应用数学 量子力学 统计 构造盆地 古生物学 估计员
作者
Weiguo Duan,Weijian Mao,Xiaomei Shi,Qingchen Zhang,Wei Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3274212
摘要

Amplitude-preserving migration is very important for reservoir characterization, which can faithfully provide information on the strength of the reflectors. However, conventional migration algorithms do not compensate for variable illumination effects and can hardly obtain true amplitudes of medium parameter. Least squares migration (LSM) is an effective method to address this issue. Unfortunately, there is a key problem with LSM methods: most LSM methods only consider illumination compensation but not consider the accuracy of migration velocity model. The accuracy of the migration velocity model directly affects the quality of migrated images. Moreover, changes in velocity are more indicative of reservoir properties than reflectivity. Therefore, it is necessary to incorporate velocity estimation into migration imaging to realize joint inversions. Based on these facts, we present an iterative re-weighted LSM method by approximating the local Hessian using point spread functions. Then, we related the LSM results to the scattering potential, simultaneously achieving velocity update with illumination compensation. Based on the gradually changing characteristics of rock properties, we adopted a sparse derivative constraint rather than requiring the result to be sparse. Consequently, this processing caused the results to contain broader bandwidths, giving the image a more continuous and textured appearance. Next, we evaluated the proposed method using the Marmousi2 model. The results had higher resolution and a more reliable amplitude than the initial migration images. Hence, we efficaciously completed the velocity model update, with our method achieving encouraging results under both relatively accurate migration velocity and highly smoothed migration velocity model tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shadow完成签到,获得积分10
刚刚
刚刚
无语的宛白完成签到 ,获得积分10
1秒前
笑点低的衬衫完成签到,获得积分10
1秒前
人123456发布了新的文献求助10
2秒前
DG发布了新的文献求助10
3秒前
3秒前
研友_VZG7GZ应助52hzzz采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
lily发布了新的文献求助10
4秒前
孙智远完成签到 ,获得积分10
6秒前
彭凯发布了新的文献求助10
7秒前
超级的绿凝完成签到,获得积分10
8秒前
李健应助小叶子采纳,获得10
9秒前
无语的宛白关注了科研通微信公众号
9秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
星辰大海应助1101592875采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得30
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
EMC应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
小蘑菇应助失眠紫真采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
萤火微光完成签到,获得积分10
13秒前
刘卓应助科研通管家采纳,获得10
13秒前
酷波er应助zorro3574采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131