已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Iterative Re-weighted Least Squares Gaussian Beam Migration and Velocity Inversion in the Image Domain based on Point Spread Functions

黑森矩阵 振幅 算法 计算机科学 反演(地质) 最小二乘函数近似 高斯分布 数学 光学 地质学 物理 应用数学 量子力学 统计 构造盆地 古生物学 估计员
作者
Weiguo Duan,Weijian Mao,Xiaomei Shi,Qingchen Zhang,Wei Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3274212
摘要

Amplitude-preserving migration is very important for reservoir characterization, which can faithfully provide information on the strength of the reflectors. However, conventional migration algorithms do not compensate for variable illumination effects and can hardly obtain true amplitudes of medium parameter. Least squares migration (LSM) is an effective method to address this issue. Unfortunately, there is a key problem with LSM methods: most LSM methods only consider illumination compensation but not consider the accuracy of migration velocity model. The accuracy of the migration velocity model directly affects the quality of migrated images. Moreover, changes in velocity are more indicative of reservoir properties than reflectivity. Therefore, it is necessary to incorporate velocity estimation into migration imaging to realize joint inversions. Based on these facts, we present an iterative re-weighted LSM method by approximating the local Hessian using point spread functions. Then, we related the LSM results to the scattering potential, simultaneously achieving velocity update with illumination compensation. Based on the gradually changing characteristics of rock properties, we adopted a sparse derivative constraint rather than requiring the result to be sparse. Consequently, this processing caused the results to contain broader bandwidths, giving the image a more continuous and textured appearance. Next, we evaluated the proposed method using the Marmousi2 model. The results had higher resolution and a more reliable amplitude than the initial migration images. Hence, we efficaciously completed the velocity model update, with our method achieving encouraging results under both relatively accurate migration velocity and highly smoothed migration velocity model tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天天快乐应助幽默夜阑采纳,获得10
1秒前
1秒前
今后应助哦萨尔采纳,获得10
3秒前
3秒前
Hello应助小星小星采纳,获得10
3秒前
NexusExplorer应助朱诗佳采纳,获得10
3秒前
Amber完成签到,获得积分10
3秒前
FashionBoy应助养乐多采纳,获得10
4秒前
yuan发布了新的文献求助10
4秒前
5秒前
archiz发布了新的文献求助10
6秒前
ssc完成签到,获得积分10
6秒前
科研通AI5应助yz123采纳,获得10
7秒前
田鸿平完成签到,获得积分10
8秒前
nhscyhy完成签到,获得积分10
9秒前
9秒前
Skywalker发布了新的文献求助30
10秒前
10秒前
shjyang完成签到,获得积分0
14秒前
14秒前
小鱼完成签到 ,获得积分10
15秒前
123完成签到,获得积分20
15秒前
15秒前
蔓蔓要努力完成签到,获得积分10
15秒前
Aurora完成签到 ,获得积分10
16秒前
jackone完成签到 ,获得积分10
18秒前
哦萨尔发布了新的文献求助10
20秒前
21秒前
眯眯眼的龙猫完成签到,获得积分10
22秒前
科研通AI6应助ssc采纳,获得10
23秒前
安德鲁发布了新的文献求助10
25秒前
26秒前
JamesPei应助justin采纳,获得10
27秒前
可爱的函函应助1111采纳,获得10
27秒前
28秒前
31秒前
走走发布了新的文献求助10
32秒前
杨亚轩发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434