Iterative Re-weighted Least Squares Gaussian Beam Migration and Velocity Inversion in the Image Domain based on Point Spread Functions

黑森矩阵 振幅 算法 计算机科学 反演(地质) 最小二乘函数近似 高斯分布 数学 光学 地质学 物理 应用数学 量子力学 统计 构造盆地 古生物学 估计员
作者
Weiguo Duan,Weijian Mao,Xiaomei Shi,Qingchen Zhang,Wei Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3274212
摘要

Amplitude-preserving migration is very important for reservoir characterization, which can faithfully provide information on the strength of the reflectors. However, conventional migration algorithms do not compensate for variable illumination effects and can hardly obtain true amplitudes of medium parameter. Least squares migration (LSM) is an effective method to address this issue. Unfortunately, there is a key problem with LSM methods: most LSM methods only consider illumination compensation but not consider the accuracy of migration velocity model. The accuracy of the migration velocity model directly affects the quality of migrated images. Moreover, changes in velocity are more indicative of reservoir properties than reflectivity. Therefore, it is necessary to incorporate velocity estimation into migration imaging to realize joint inversions. Based on these facts, we present an iterative re-weighted LSM method by approximating the local Hessian using point spread functions. Then, we related the LSM results to the scattering potential, simultaneously achieving velocity update with illumination compensation. Based on the gradually changing characteristics of rock properties, we adopted a sparse derivative constraint rather than requiring the result to be sparse. Consequently, this processing caused the results to contain broader bandwidths, giving the image a more continuous and textured appearance. Next, we evaluated the proposed method using the Marmousi2 model. The results had higher resolution and a more reliable amplitude than the initial migration images. Hence, we efficaciously completed the velocity model update, with our method achieving encouraging results under both relatively accurate migration velocity and highly smoothed migration velocity model tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美有姬完成签到,获得积分10
刚刚
万能图书馆应助何博士采纳,获得10
刚刚
科研通AI2S应助蘑菇采纳,获得10
刚刚
一平发布了新的文献求助10
1秒前
王一博完成签到,获得积分10
1秒前
2秒前
nihil完成签到,获得积分10
2秒前
活力的泥猴桃完成签到 ,获得积分10
3秒前
3秒前
4秒前
obito完成签到,获得积分10
4秒前
娜行发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
Ck完成签到,获得积分10
6秒前
烦烦完成签到 ,获得积分10
7秒前
百宝发布了新的文献求助10
8秒前
jiangnan发布了新的文献求助10
8秒前
Sev完成签到,获得积分10
8秒前
8秒前
可耐的乘风完成签到,获得积分10
8秒前
FIN应助obito采纳,获得30
9秒前
啾啾发布了新的文献求助10
9秒前
爱学习的向日葵完成签到,获得积分10
10秒前
10秒前
华仔应助泛泛之交采纳,获得10
11秒前
雪123发布了新的文献求助10
11秒前
11秒前
12秒前
charon发布了新的文献求助10
12秒前
凶狠的食铁兽完成签到,获得积分10
12秒前
星辰大海应助花花啊采纳,获得10
12秒前
华仔应助liuyingke采纳,获得10
12秒前
HEIKU应助还不如瞎写采纳,获得10
13秒前
liuliumei发布了新的文献求助30
14秒前
zhouzhou完成签到,获得积分10
14秒前
sure发布了新的文献求助10
14秒前
上官若男应助Hu111采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672