Iterative Re-weighted Least Squares Gaussian Beam Migration and Velocity Inversion in the Image Domain based on Point Spread Functions

黑森矩阵 振幅 算法 计算机科学 反演(地质) 最小二乘函数近似 高斯分布 数学 光学 地质学 物理 应用数学 量子力学 统计 构造盆地 古生物学 估计员
作者
Weiguo Duan,Weijian Mao,Xiaomei Shi,Qingchen Zhang,Wei Ouyang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2023.3274212
摘要

Amplitude-preserving migration is very important for reservoir characterization, which can faithfully provide information on the strength of the reflectors. However, conventional migration algorithms do not compensate for variable illumination effects and can hardly obtain true amplitudes of medium parameter. Least squares migration (LSM) is an effective method to address this issue. Unfortunately, there is a key problem with LSM methods: most LSM methods only consider illumination compensation but not consider the accuracy of migration velocity model. The accuracy of the migration velocity model directly affects the quality of migrated images. Moreover, changes in velocity are more indicative of reservoir properties than reflectivity. Therefore, it is necessary to incorporate velocity estimation into migration imaging to realize joint inversions. Based on these facts, we present an iterative re-weighted LSM method by approximating the local Hessian using point spread functions. Then, we related the LSM results to the scattering potential, simultaneously achieving velocity update with illumination compensation. Based on the gradually changing characteristics of rock properties, we adopted a sparse derivative constraint rather than requiring the result to be sparse. Consequently, this processing caused the results to contain broader bandwidths, giving the image a more continuous and textured appearance. Next, we evaluated the proposed method using the Marmousi2 model. The results had higher resolution and a more reliable amplitude than the initial migration images. Hence, we efficaciously completed the velocity model update, with our method achieving encouraging results under both relatively accurate migration velocity and highly smoothed migration velocity model tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就绿柳完成签到,获得积分10
刚刚
aixuexi*完成签到,获得积分10
刚刚
Akim应助聪慧的正豪采纳,获得10
刚刚
刚刚
蓝莓完成签到,获得积分10
刚刚
顺利寻菡发布了新的文献求助10
刚刚
开心的乾完成签到,获得积分10
1秒前
1秒前
积极冷霜完成签到,获得积分10
1秒前
1秒前
weiwei完成签到,获得积分10
1秒前
兜兜完成签到,获得积分10
1秒前
CipherSage应助王志杰采纳,获得10
2秒前
宝宝时代完成签到,获得积分10
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
ycool完成签到 ,获得积分10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
灵巧书蝶完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
酷波er应助SherlockJia采纳,获得10
3秒前
3秒前
windli发布了新的文献求助10
4秒前
纪言七许完成签到 ,获得积分10
4秒前
luke17743508621完成签到 ,获得积分10
4秒前
勤恳的小馒头完成签到,获得积分10
4秒前
Hello应助蓝莓采纳,获得10
4秒前
wanli445完成签到,获得积分10
4秒前
欣喜石头发布了新的文献求助10
5秒前
小确幸完成签到,获得积分10
5秒前
番茄鱼完成签到 ,获得积分10
5秒前
小幸运完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472