Efficient degradation of diclofenac by digestate-derived biochar catalyzed peroxymonosulfate oxidation: Performance, machine learning prediction, and mechanism

沼渣 生物炭 降级(电信) 催化作用 环境修复 化学 羟基化 键裂 环境化学 废水 计算机科学 污染 有机化学 环境工程 厌氧消化 环境科学 热解 电信 生物 甲烷 生态学
作者
Jingxin Liu,Hang Jia,Meng Mei,Teng Wang,Si Chen,Jinping Li
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:167: 77-88 被引量:21
标识
DOI:10.1016/j.psep.2022.09.007
摘要

Diclofenac (DCF), a widely used drug, is frequently found in natural waters, and its removal has caused extensive concern. Sulfate radical-based advanced oxidation processes are efficient for the degradation of organic pollutants, but the self-decomposition of persulfates is always sluggish and restricted. Herein, self-N doped biochar derived from food waste digestate (FWDB) was evaluated as the activator of peroxylmonosulfate (PMS) in terms of DCF degradation. The effects of several key operating variables were examined, and the results indicated that ∼93% of DCF with an initial concentration of 20 mg/L was removed at FWDB dosage of 0.3 g/L and PMS concentration of 1.0 mM. Thereafter, the machine learning method was explored to simulate and predict the DCF removal process. The reactive oxygen species participated in the reaction was identified as 1O2, and the reaction sites on FWDB were determined as graphitized carbon, CO structure, doped-N, and defective edges. Moreover, based on the identification of intermediates and products, the possible DCF destruction pathways were proposed as hydroxylation, cleavage of N−C bond, and decarboxylation. This study provided an economical and convenient heterogeneous PMS activator for remediation of organic wastewater and confirmed the feasibility of optimizing the contaminant degradation process via data mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助lin采纳,获得50
1秒前
周周发布了新的文献求助10
1秒前
感动归尘应助Fiona采纳,获得10
2秒前
Tiger完成签到,获得积分20
2秒前
小小白菜呀完成签到,获得积分10
2秒前
奈文摩尔发布了新的文献求助10
3秒前
绺妙发布了新的文献求助10
4秒前
5秒前
莫不静好发布了新的文献求助10
6秒前
stuffmatter完成签到,获得积分0
6秒前
英姑应助zzn采纳,获得10
7秒前
一个小菜鸡完成签到,获得积分10
7秒前
周周完成签到,获得积分10
9秒前
10秒前
不配.应助自信语雪采纳,获得10
11秒前
11秒前
11秒前
Zephyr完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
Carina完成签到 ,获得积分10
14秒前
平淡小猫发布了新的文献求助10
15秒前
百里凡松发布了新的文献求助10
16秒前
独特忆山发布了新的文献求助20
16秒前
monere应助xtingkk采纳,获得20
17秒前
17秒前
霸气秋玲发布了新的文献求助10
17秒前
17秒前
傻自强呀完成签到,获得积分10
18秒前
搜集达人应助莫不静好采纳,获得10
18秒前
19秒前
19秒前
000完成签到 ,获得积分10
20秒前
20秒前
感动归尘应助zhang08采纳,获得10
21秒前
大个应助Zephyr采纳,获得10
21秒前
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240388
求助须知:如何正确求助?哪些是违规求助? 2885254
关于积分的说明 8237739
捐赠科研通 2553584
什么是DOI,文献DOI怎么找? 1381724
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009