DNA G-Quadruplex in Human Telomeres and Oncogene Promoters: Structures, Functions, and Small Molecule Targeting

端粒 发起人 G-四倍体 DNA 表观遗传学 染色质 小分子 化学 生物 细胞生物学 遗传学 基因 基因表达
作者
Luying Chen,Jonathan Dickerhoff,Saburo Sakai,Danzhou Yang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (18): 2628-2646 被引量:94
标识
DOI:10.1021/acs.accounts.2c00337
摘要

DNA G-quadruplex secondary structures formed in guanine-rich human telomeres and oncogene promoters are functionally important and have emerged as a promising new class of cancer-specific drug targets. These globular intramolecular structures are stabilized by K+ or Na+ and form readily under physiological solution conditions. Moreover, G-quadruplexes are epigenetic features and can alter chromatin structure and function together with interactive proteins. Here, we discuss our efforts over the last two decades to understand the structures and functions of DNA G-quadruplexes formed in key oncogene promoters and human telomeres and their interactions with small molecules. Using high-field NMR spectroscopy, we determined the high-resolution structures of physiologically relevant telomeric G-quadruplexes in K+ solution with a major form (hybrid-2) and a minor form (hybrid-1), as well as a two-tetrad intermediate. The intrinsic structural polymorphism of telomeric DNA may be important for the biology of human telomeres, and we proposed a model for the interconversion. More recently, we have worked on G-quadruplexes of MYC, BCL2, PDGFR-β, VEGF, and k-RAS oncogene promoters. We determined the structure of the major G-quadruplex formed in the MYC promoter, a prototype for parallel G-quadruplexes. It is the first example of the parallel-stranded G3NG3 structure motif with a 1-nt loop, which is prevalent in promoter sequences and likely evolutionarily selected to initiate folding. Remarkably, the parallel MYC promoter G-quadruplexes are highly stable. Additionally, we determined the molecular structures of G-quadruplexes formed in human BCL2, VEGF, and PDGFR-β promoters, each adopting a unique structure. For example, the BCL2 promoter contains distinct interchangeable G-quadruplexes in two adjacent regions, suggesting precise regulation by different proteins. The PDGFR-β promoter adopts unique "broken-strand" and vacancy G-quadruplexes, which can be recognized by cellular guanine metabolites for a potential regulatory role.Structural information on G-quadruplexes in complex with small-molecules is critical for understanding specific recognition and structure-based rational drug design. Our studies show that many G-quadruplexes contain unique structural features such as capping and loop structures, allowing specific recognition by drugs and protein. This represents a paradigm shift in understanding DNA as a drug target: Rather than a uniform, nonselective binding site in duplex DNA, the G-quadruplex is being pursued as a new class of selectively targetable drug receptors. We focus on targeting the biologically relevant MYC promoter G-quadruplex (MycG4) with small molecules and have determined its first and additional drug complex structures. Very recently, we have discovered clinically tested indenoisoquinolines as strong MycG4 binders and potent MYC inhibitors. We have also discovered drugs targeting the unique dGMP-bound-vG4 formed in the PDGFR-β promoter. Moreover, we determined the complex structures of the first small molecules that specifically recognize the physiologically relevant human telomeric G-quadruplexes. Unlike the previously recognized dogma that the optimal G-quadruplex ligands are large aromatic or cyclic compounds, our results suggest that smaller asymmetric compounds with appropriate functional groups are better choices to specifically bind G-quadruplexes. This body of work lays a strong foundation for future work aimed at understanding the cellular functions of G-quadruplexes and G-quadruplex-targeted drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助山山采纳,获得10
1秒前
shor0414完成签到 ,获得积分10
2秒前
daheeeee完成签到,获得积分10
2秒前
Liang完成签到,获得积分10
5秒前
杂菜流完成签到,获得积分10
6秒前
peiter完成签到,获得积分10
6秒前
7秒前
8秒前
脑洞疼应助oxygen26采纳,获得10
10秒前
ambrose37完成签到 ,获得积分10
10秒前
10秒前
现代的紫霜完成签到,获得积分10
10秒前
韭菜发布了新的文献求助30
12秒前
莫小烦完成签到,获得积分10
12秒前
czk发布了新的文献求助10
13秒前
然而。完成签到 ,获得积分10
13秒前
liujinjin完成签到,获得积分10
14秒前
稳重的麦片完成签到,获得积分10
14秒前
科研通AI2S应助ccq采纳,获得10
14秒前
看文献完成签到,获得积分0
17秒前
情怀应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得30
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
17秒前
XXXXH完成签到,获得积分10
18秒前
不想洗碗完成签到 ,获得积分10
18秒前
C_Li完成签到,获得积分10
19秒前
激情的含巧完成签到,获得积分10
19秒前
123456完成签到 ,获得积分10
20秒前
老猪佩奇完成签到,获得积分10
21秒前
心灵美砖头完成签到,获得积分10
23秒前
czk完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助30
25秒前
江雁完成签到,获得积分10
25秒前
小林神完成签到,获得积分10
29秒前
nicheng完成签到 ,获得积分0
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976745
求助须知:如何正确求助?哪些是违规求助? 3520831
关于积分的说明 11204951
捐赠科研通 3257684
什么是DOI,文献DOI怎么找? 1798834
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806663