In situ polymerization of 1,3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery

材料科学 电解质 离子电导率 陶瓷 电池(电) 化学工程 电极 复合数 电导率 快离子导体 聚合物 原位聚合 聚合 热稳定性 复合材料 物理化学 工程类 物理 量子力学 功率(物理) 化学
作者
Linhui Chen,Zeya Huang,Shi-Le Chen,Rong‐Ao Tong,Hailong Wang,Gang Shao,Chang‐An Wang
出处
期刊:Rare Metals [Springer Nature]
卷期号:41 (11): 3694-3705 被引量:19
标识
DOI:10.1007/s12598-022-02080-4
摘要

The polymer-ceramic composite electrolyte is considered as one of promising electrolytes for solid-state battery. However, in previous research, ceramic particles are usually dispersed in polymer matrix and could not form continuous Li+ conductive channels. The agglomeration of ceramic particles could also lead to low ionic conductivity and poor interfacial electrode/electrolyte contact. In this paper, self-supported porous Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte is synthesized by gelcasting process, which possesses three-dimensional (3D) interconnected pore channels and relatively high strength. The 1,3-dioxolane (DOL) could penetrate into the porous LLZTO framework for its excellent fluidity. The subsequent in situ polymerization process by thermal treatment could completely fill the internal pores and improve the interfacial contact with electrode. The resulting 3D composite electrolyte with dual continuous Li+ transport channels in ceramic and polymer components exhibits high ionic conductivity of 2.8 × 10–4 S·cm−1 at room temperature and low Li/electrolyte interfacial resistance of 94 Ω·cm2 at 40 °C. The corresponding Li/Li symmetric cell delivers stable voltage profiles for over 600 h under 0.1 and 0.2 mA·cm−2. The solid-state Li/LiFePO4 battery shows superior rate and cycling performance under 0.1C and 0.2C. This work guides the preparation of composite electrolyte with dual continuous Li+ conductive paths as well as high ceramic ratio and interface modification strategy for solid-state Li metal battery.Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
y雨泾发布了新的文献求助10
6秒前
kento发布了新的文献求助150
6秒前
栗笠完成签到 ,获得积分10
6秒前
大脸猫发布了新的文献求助10
7秒前
NIGANSHA完成签到 ,获得积分10
8秒前
9秒前
难过冷亦完成签到,获得积分10
11秒前
隐形铃铛发布了新的文献求助10
12秒前
雁夜完成签到,获得积分10
12秒前
guaner发布了新的文献求助10
15秒前
16秒前
少年完成签到 ,获得积分10
16秒前
现代书雪发布了新的文献求助10
17秒前
20秒前
能干断缘完成签到,获得积分10
22秒前
maox1aoxin应助Zr采纳,获得30
22秒前
Kgron发布了新的文献求助10
22秒前
柔弱的半烟完成签到 ,获得积分10
23秒前
不潮薯饼完成签到,获得积分10
23秒前
26秒前
高挑的涛发布了新的文献求助10
27秒前
29秒前
29秒前
30秒前
易安完成签到,获得积分20
30秒前
32秒前
32秒前
Ava应助科研通管家采纳,获得10
32秒前
英姑应助科研通管家采纳,获得10
32秒前
32秒前
星辰大海应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
在水一方应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
33秒前
善学以致用应助机智的乌采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315281
求助须知:如何正确求助?哪些是违规求助? 2947273
关于积分的说明 8535004
捐赠科研通 2623375
什么是DOI,文献DOI怎么找? 1435021
科研通“疑难数据库(出版商)”最低求助积分说明 665445
邀请新用户注册赠送积分活动 651155