Are you willing to forgive AI? Service recovery from medical AI service failure

服务补救 服务(商务) 归属 服务交付框架 服务水平目标 服务设计 服务保证 业务 服务提供商 服务体系 营销 运营管理 过程管理 知识管理 计算机科学 心理学 服务质量 工程类 社会心理学
作者
Aihui Chen,Yueming Pan,Longyu Li,Yunshuang Yu
出处
期刊:Industrial Management and Data Systems [Emerald (MCB UP)]
卷期号:122 (11): 2540-2557 被引量:12
标识
DOI:10.1108/imds-12-2021-0801
摘要

Purpose As an emerging technology, medical artificial intelligence (AI) plays an important role in the healthcare system. However, the service failure of medical AI causes severe violations to user trust. Different from other services that do not involve vital health, customers' trust toward the service of medical AI are difficult to repair after service failure. This study explores the links among different types of attributions (external and internal), service recovery strategies (firm, customer, and co-creation), and service recovery outcomes (trust). Design/methodology/approach Empirical analysis was carried out using data ( N = 338) collected from a 2 × 3 scenario-based experiment. The scenario-based experiment has three stages: service delivery, service failure, and service recovery. The attribution of service failure was divided into two parts (customer vs. firm), while the recovery of service failure was divided into three parts (customer vs. firm vs. co-creation), making the design full factorial. Findings The results show that (1) internal attribution of the service failure can easily repair both affective-based trust (AFTR) and cognitive-based trust (CGTR), (2) co-creation recovery has a greater positive effect on AFTR while firm recovery is more effective on cognitive-based trust, (3) a series of interesting conclusions are found in the interaction between customers' attribution and service recovery strategy. Originality/value The authors' findings are of great significance to the strategy of service recovery after service failure in the medical AI system. According to the attribution type of service failure, medical organizations can choose a strategy to more accurately improve service recovery effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遠山完成签到,获得积分10
刚刚
李爱国应助LP采纳,获得10
1秒前
小萌完成签到 ,获得积分10
1秒前
kkk发布了新的文献求助10
1秒前
z_zq完成签到,获得积分10
1秒前
Qing完成签到,获得积分10
1秒前
CodeCraft应助满增明采纳,获得10
1秒前
大模型应助satchzhao采纳,获得10
2秒前
RR发布了新的文献求助10
2秒前
英姑应助田小姐采纳,获得10
2秒前
NexusExplorer应助xixi采纳,获得10
2秒前
彭a完成签到,获得积分10
2秒前
光亮的幻柏完成签到,获得积分10
3秒前
小鱼完成签到,获得积分10
3秒前
热情依白完成签到 ,获得积分10
4秒前
努力学习发布了新的文献求助10
5秒前
活泼凌青完成签到,获得积分10
5秒前
duyu完成签到 ,获得积分10
6秒前
jun完成签到 ,获得积分10
6秒前
刘桑桑完成签到,获得积分10
6秒前
不安溪灵完成签到,获得积分10
6秒前
joybee完成签到,获得积分0
7秒前
梨城凯哥完成签到,获得积分20
7秒前
李健的小迷弟应助又声采纳,获得10
8秒前
CodeCraft应助又声采纳,获得10
8秒前
乐乐应助又声采纳,获得10
8秒前
白凌风完成签到,获得积分10
9秒前
土亢土亢土应助mm采纳,获得10
9秒前
9秒前
隐形元绿完成签到,获得积分10
9秒前
5123发布了新的文献求助30
9秒前
9秒前
10秒前
12秒前
jialin完成签到 ,获得积分10
12秒前
威武从寒完成签到,获得积分10
12秒前
丘比特应助槑槑采纳,获得10
13秒前
robin发布了新的文献求助10
13秒前
HongJiang完成签到,获得积分10
14秒前
芒果好高完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899231
关于积分的说明 8304717
捐赠科研通 2568521
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630725