Identification of Room Acoustic Impulse Responses via Kronecker Product Decompositions

有限冲激响应 脉冲响应 计算机科学 克罗内克产品 脉冲(物理) 算法 维纳滤波器 混响 收敛速度 话筒 无限冲激响应 计算复杂性理论 自适应滤波器 系统标识 滤波器(信号处理) 数学 数字滤波器 克罗内克三角洲 声学 数学分析 计算机网络 频道(广播) 电信 物理 声压 量子力学 计算机视觉 数据库 度量(数据仓库)
作者
Laura-Maria Dogariu,Jacob Benesty,Constantin Paleologu,Silviu Ciochină
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 2828-2841 被引量:18
标识
DOI:10.1109/taslp.2022.3202128
摘要

The identification of room acoustic impulse responses represents a challenging problem in the framework of many important applications related to the acoustic environment, like echo cancellation, noise reduction, and microphone arrays, among others. In this context, the main issues are related to the long length of such impulse responses and their time-variant nature. These raise significant difficulties in terms of the convergence rate, computational complexity, and accuracy of the solution. Recently, a decomposition-based approach was developed for the identification of low-rank systems, which can also be applied (to some extent) for the identification of acoustic impulse responses. This approach exploits the nearest Kronecker product decomposition of the impulse response and solves a high-dimension system identification problem using a combination of low-dimension solutions (provided by shorter filters), thus gaining in terms of both performance and complexity. Nevertheless, it does not consider the intrinsic nature of the room acoustic impulse responses, which contain specific components (e.g., early reflections and late reverberation) that can be very different in nature. In this paper, we propose an improved decomposition-based method (via the Kronecker product) that takes into account these specific components and processes them separately, in order to better exploit their important low-rank features. Following this approach, an iterative Wiener filter is firstly developed, followed by a recursive least-squares (RLS) algorithm designed in the same framework. Both solutions outperform the conventional benchmarks, i.e., the conventional Wiener filter and the RLS algorithm, respectively. Moreover, they achieve superior performances as compared to the recently developed versions based on the nearest Kronecker product decomposition, also owning lower computational complexities than their previous counterparts. Simulations are performed in the framework of acoustic echo cancellation and the obtained results support the performance features of the proposed algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助高雨晴采纳,获得30
1秒前
1秒前
淡然初瑶完成签到 ,获得积分10
2秒前
何my完成签到 ,获得积分10
2秒前
Wingli13发布了新的文献求助10
2秒前
2秒前
高源伯发布了新的文献求助10
4秒前
微笑枫完成签到,获得积分10
4秒前
夏安完成签到,获得积分10
4秒前
乐观的幻悲完成签到,获得积分20
5秒前
YY发布了新的文献求助10
8秒前
8秒前
9秒前
漂泊的思绪完成签到,获得积分10
9秒前
伤心葫芦娃完成签到,获得积分10
9秒前
科研通AI6应助nn采纳,获得10
9秒前
11秒前
liu123456完成签到,获得积分10
12秒前
12秒前
充电宝应助11采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
BowieHuang应助霜降采纳,获得10
13秒前
阿拉艾浩基完成签到,获得积分10
13秒前
杨建明发布了新的文献求助10
14秒前
YY完成签到,获得积分10
14秒前
Accept2024发布了新的文献求助10
14秒前
科研通AI6应助张佳乐采纳,获得10
15秒前
喜爱大白兔完成签到 ,获得积分10
16秒前
子勋完成签到,获得积分10
16秒前
wuxunxun2015发布了新的文献求助10
16秒前
huang完成签到,获得积分10
17秒前
还魂灬祭发布了新的文献求助10
17秒前
灵运完成签到,获得积分10
17秒前
17秒前
科研通AI6应助深情的凝梦采纳,获得30
18秒前
sodarday完成签到,获得积分10
18秒前
19秒前
ctyyyu完成签到,获得积分10
20秒前
英姑应助还魂灬祭采纳,获得10
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597235
求助须知:如何正确求助?哪些是违规求助? 4682446
关于积分的说明 14826453
捐赠科研通 4659873
什么是DOI,文献DOI怎么找? 2536467
邀请新用户注册赠送积分活动 1504178
关于科研通互助平台的介绍 1470139