Identification of Room Acoustic Impulse Responses via Kronecker Product Decompositions

有限冲激响应 脉冲响应 计算机科学 克罗内克产品 脉冲(物理) 算法 维纳滤波器 混响 收敛速度 话筒 无限冲激响应 计算复杂性理论 自适应滤波器 系统标识 滤波器(信号处理) 数学 数字滤波器 克罗内克三角洲 声学 数学分析 计算机网络 频道(广播) 电信 物理 声压 量子力学 计算机视觉 数据库 度量(数据仓库)
作者
Laura-Maria Dogariu,Jacob Benesty,Constantin Paleologu,Silviu Ciochină
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 2828-2841 被引量:18
标识
DOI:10.1109/taslp.2022.3202128
摘要

The identification of room acoustic impulse responses represents a challenging problem in the framework of many important applications related to the acoustic environment, like echo cancellation, noise reduction, and microphone arrays, among others. In this context, the main issues are related to the long length of such impulse responses and their time-variant nature. These raise significant difficulties in terms of the convergence rate, computational complexity, and accuracy of the solution. Recently, a decomposition-based approach was developed for the identification of low-rank systems, which can also be applied (to some extent) for the identification of acoustic impulse responses. This approach exploits the nearest Kronecker product decomposition of the impulse response and solves a high-dimension system identification problem using a combination of low-dimension solutions (provided by shorter filters), thus gaining in terms of both performance and complexity. Nevertheless, it does not consider the intrinsic nature of the room acoustic impulse responses, which contain specific components (e.g., early reflections and late reverberation) that can be very different in nature. In this paper, we propose an improved decomposition-based method (via the Kronecker product) that takes into account these specific components and processes them separately, in order to better exploit their important low-rank features. Following this approach, an iterative Wiener filter is firstly developed, followed by a recursive least-squares (RLS) algorithm designed in the same framework. Both solutions outperform the conventional benchmarks, i.e., the conventional Wiener filter and the RLS algorithm, respectively. Moreover, they achieve superior performances as compared to the recently developed versions based on the nearest Kronecker product decomposition, also owning lower computational complexities than their previous counterparts. Simulations are performed in the framework of acoustic echo cancellation and the obtained results support the performance features of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助优秀的枕头采纳,获得10
2秒前
维妮妮发布了新的文献求助10
2秒前
Dr_zsc发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
WFLLL完成签到,获得积分10
7秒前
归尘应助清秀鑫鹏采纳,获得10
7秒前
7秒前
7秒前
虚心柠檬完成签到 ,获得积分10
8秒前
liutg24完成签到,获得积分10
8秒前
8秒前
9秒前
思源应助温暖的沛凝采纳,获得10
10秒前
ding应助jianghs采纳,获得30
11秒前
XxxxxtPuCO完成签到,获得积分20
12秒前
12秒前
蒋婷发布了新的文献求助10
12秒前
拾年发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
last炫神丶完成签到,获得积分10
14秒前
KinoFreeze完成签到 ,获得积分10
15秒前
huanghuahua发布了新的文献求助10
15秒前
16秒前
卿欣完成签到 ,获得积分10
17秒前
last炫神丶发布了新的文献求助10
17秒前
风枞完成签到 ,获得积分10
18秒前
白之玉发布了新的文献求助10
19秒前
小酒迟疑完成签到,获得积分10
21秒前
蒋婷完成签到,获得积分10
21秒前
21秒前
桐桐应助文静的猕猴桃采纳,获得10
22秒前
小马甲应助熊小子爱学习采纳,获得10
22秒前
24秒前
英姑应助shain采纳,获得10
25秒前
huanghuahua完成签到,获得积分10
27秒前
Jasper应助沉静初南采纳,获得10
28秒前
Jasper应助sun采纳,获得10
29秒前
30秒前
Tyranny完成签到 ,获得积分10
30秒前
Chocolate发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712