Quantitative risk assessment of railway intrusions with text mining and fuzzy Rule-Based Bow-Tie model

领结 过程(计算) 事件(粒子物理) 概率逻辑 计算机科学 风险分析(工程) 工程类 模糊逻辑 入侵检测系统 数据挖掘 人工智能 量子力学 医学 电信 操作系统 物理 天线(收音机)
作者
Yujie Huang,Zhipeng Zhang,Yu Tao,Hao Hu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101726-101726 被引量:13
标识
DOI:10.1016/j.aei.2022.101726
摘要

With the increasing traveling speed of railway transportation, rail right-of-way intrusions can cause high-consequence accidents and pose severe challenges to railway safety. Although intrusion detection technologies have been widely studied and applied, they can only support in-event inspection and post-event control. In the current complex environment, there is a critical need to analyze the causal chain of railway intrusions and mitigate safety risks before or during the risk evolution process. This paper developed a novel methodological framework on the cause-consequence model based on the text mining techniques and fuzzy bow-tie modeling to systematically investigate the railway intrusion risks. In order to mine both critical factors and their interrelationships, a lexical co-occurrence analysis was carried out on a customized corpus of intrusion accident recordings. Then structured bow-tie diagrams were developed based on the networks generated by unstructured data. To overcome the data uncertainty issue, this paper utilized cause-consequence-based probabilistic analysis and fuzzy theory to quantify the risks involving the occurrence probability of top events and outcomes in terms of expert judgements. The application of the proposed bow-tie model was demonstrated based on the case of the Hualien Derailment accident. The findings based on the bow-tie model and historical accidents in this research have systematically summarized basic events and causal chains. Ultimately, they can be utilized by researchers and practitioners both to identify the critical risk factors and enhance railway safety via proactive and reactive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nightmare发布了新的文献求助10
1秒前
大橙子发布了新的文献求助10
4秒前
6秒前
Zhh完成签到 ,获得积分10
6秒前
Tina完成签到,获得积分10
8秒前
微生完成签到 ,获得积分10
8秒前
9秒前
chhzz完成签到 ,获得积分10
10秒前
飞舞伤寒发布了新的文献求助20
10秒前
曾珍发布了新的文献求助10
12秒前
qwe完成签到,获得积分10
13秒前
Xdz完成签到 ,获得积分10
13秒前
cai完成签到 ,获得积分10
16秒前
雨恋凡尘完成签到,获得积分0
19秒前
羊羔肉完成签到,获得积分10
21秒前
胖丁完成签到,获得积分10
21秒前
笨笨凡松完成签到,获得积分10
24秒前
飞舞伤寒完成签到,获得积分10
24秒前
贝利亚完成签到,获得积分10
26秒前
喜多多的小眼静完成签到 ,获得积分10
26秒前
26秒前
Dsunflower完成签到 ,获得积分10
27秒前
羊羔肉发布了新的文献求助50
28秒前
半夏发布了新的文献求助10
28秒前
29秒前
29秒前
大橙子发布了新的文献求助10
30秒前
星辰大海应助贝利亚采纳,获得10
30秒前
31秒前
sunny心晴完成签到 ,获得积分10
33秒前
独特的凝云完成签到 ,获得积分10
33秒前
TheDing完成签到,获得积分10
34秒前
传奇3应助lenetivy采纳,获得10
36秒前
积极的忆曼完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
酒剑仙完成签到,获得积分10
37秒前
YANGMJ完成签到,获得积分10
38秒前
xialuoke完成签到,获得积分10
38秒前
scinature发布了新的文献求助10
39秒前
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022