Quantitative risk assessment of railway intrusions with text mining and fuzzy Rule-Based Bow-Tie model

领结 过程(计算) 事件(粒子物理) 概率逻辑 计算机科学 风险分析(工程) 工程类 模糊逻辑 入侵检测系统 数据挖掘 人工智能 量子力学 医学 电信 操作系统 物理 天线(收音机)
作者
Yujie Huang,Zhipeng Zhang,Yu Tao,Hao Hu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101726-101726 被引量:13
标识
DOI:10.1016/j.aei.2022.101726
摘要

With the increasing traveling speed of railway transportation, rail right-of-way intrusions can cause high-consequence accidents and pose severe challenges to railway safety. Although intrusion detection technologies have been widely studied and applied, they can only support in-event inspection and post-event control. In the current complex environment, there is a critical need to analyze the causal chain of railway intrusions and mitigate safety risks before or during the risk evolution process. This paper developed a novel methodological framework on the cause-consequence model based on the text mining techniques and fuzzy bow-tie modeling to systematically investigate the railway intrusion risks. In order to mine both critical factors and their interrelationships, a lexical co-occurrence analysis was carried out on a customized corpus of intrusion accident recordings. Then structured bow-tie diagrams were developed based on the networks generated by unstructured data. To overcome the data uncertainty issue, this paper utilized cause-consequence-based probabilistic analysis and fuzzy theory to quantify the risks involving the occurrence probability of top events and outcomes in terms of expert judgements. The application of the proposed bow-tie model was demonstrated based on the case of the Hualien Derailment accident. The findings based on the bow-tie model and historical accidents in this research have systematically summarized basic events and causal chains. Ultimately, they can be utilized by researchers and practitioners both to identify the critical risk factors and enhance railway safety via proactive and reactive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
LXD发布了新的文献求助10
1秒前
iNk应助两只老虎和兔子采纳,获得10
1秒前
fuyue完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
华仔应助高木同学采纳,获得10
2秒前
狂野萤应助耍酷的觅荷采纳,获得20
2秒前
czyzyzy发布了新的文献求助10
3秒前
lucas发布了新的文献求助10
3秒前
musejie应助陈琳采纳,获得10
3秒前
1112完成签到,获得积分10
3秒前
刘医生发布了新的文献求助30
3秒前
gx发布了新的文献求助10
3秒前
梦想在飞发布了新的文献求助20
4秒前
4秒前
Orma完成签到 ,获得积分10
5秒前
5秒前
安静人完成签到 ,获得积分10
6秒前
高lucky发布了新的文献求助10
6秒前
丘比特应助一直采纳,获得10
6秒前
追寻天亦发布了新的文献求助10
6秒前
7秒前
1112发布了新的文献求助10
7秒前
7秒前
sun完成签到 ,获得积分10
7秒前
wanci应助LXD采纳,获得10
8秒前
领导范儿应助CCCr采纳,获得10
8秒前
Akim应助zhangtong采纳,获得10
9秒前
9秒前
莫西莫西发布了新的文献求助10
10秒前
10秒前
11秒前
威武的妍完成签到,获得积分10
11秒前
11秒前
研友_nVqwxL完成签到,获得积分10
11秒前
zzbyxh发布了新的文献求助10
11秒前
无奈的鞋子完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202