Quantitative risk assessment of railway intrusions with text mining and fuzzy Rule-Based Bow-Tie model

领结 过程(计算) 事件(粒子物理) 概率逻辑 计算机科学 风险分析(工程) 工程类 模糊逻辑 入侵检测系统 数据挖掘 人工智能 医学 电信 物理 量子力学 天线(收音机) 操作系统
作者
Yujie Huang,Zhipeng Zhang,Yu Tao,Hao Hu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:54: 101726-101726 被引量:13
标识
DOI:10.1016/j.aei.2022.101726
摘要

With the increasing traveling speed of railway transportation, rail right-of-way intrusions can cause high-consequence accidents and pose severe challenges to railway safety. Although intrusion detection technologies have been widely studied and applied, they can only support in-event inspection and post-event control. In the current complex environment, there is a critical need to analyze the causal chain of railway intrusions and mitigate safety risks before or during the risk evolution process. This paper developed a novel methodological framework on the cause-consequence model based on the text mining techniques and fuzzy bow-tie modeling to systematically investigate the railway intrusion risks. In order to mine both critical factors and their interrelationships, a lexical co-occurrence analysis was carried out on a customized corpus of intrusion accident recordings. Then structured bow-tie diagrams were developed based on the networks generated by unstructured data. To overcome the data uncertainty issue, this paper utilized cause-consequence-based probabilistic analysis and fuzzy theory to quantify the risks involving the occurrence probability of top events and outcomes in terms of expert judgements. The application of the proposed bow-tie model was demonstrated based on the case of the Hualien Derailment accident. The findings based on the bow-tie model and historical accidents in this research have systematically summarized basic events and causal chains. Ultimately, they can be utilized by researchers and practitioners both to identify the critical risk factors and enhance railway safety via proactive and reactive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5433完成签到,获得积分10
2秒前
高大冷菱发布了新的文献求助10
4秒前
4秒前
6秒前
燕燕完成签到 ,获得积分10
6秒前
循环bug完成签到,获得积分10
10秒前
淡淡冰淇淋完成签到,获得积分20
10秒前
大个应助嘟嘟金子采纳,获得30
10秒前
平常的凡白完成签到 ,获得积分10
11秒前
江江给江江的求助进行了留言
11秒前
夜枫完成签到 ,获得积分10
11秒前
12秒前
华仔应助miku1采纳,获得10
13秒前
13秒前
hwl完成签到,获得积分10
13秒前
乐乐应助高大冷菱采纳,获得10
14秒前
打打应助饱满剑封采纳,获得10
15秒前
杨九发布了新的文献求助10
17秒前
17秒前
orixero应助nav采纳,获得10
17秒前
桀桀发布了新的文献求助30
17秒前
一一应助淡淡冰淇淋采纳,获得20
19秒前
封尘逸动完成签到,获得积分10
19秒前
hxl完成签到 ,获得积分10
19秒前
zzzzzzzz发布了新的文献求助10
20秒前
21秒前
跳跃尔琴发布了新的文献求助10
22秒前
lan完成签到,获得积分10
22秒前
纵马长歌完成签到,获得积分10
23秒前
科研牛马完成签到,获得积分10
25秒前
27秒前
miku1发布了新的文献求助10
28秒前
火星上雨珍完成签到,获得积分10
28秒前
大雁完成签到,获得积分10
28秒前
SuperYM完成签到,获得积分10
29秒前
spark317发布了新的文献求助10
29秒前
赵焱峥完成签到,获得积分10
30秒前
32秒前
天天快乐应助苏小小采纳,获得10
33秒前
大力的小熊猫完成签到 ,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825