Quantitative risk assessment of railway intrusions with text mining and fuzzy Rule-Based Bow-Tie model

领结 过程(计算) 事件(粒子物理) 概率逻辑 计算机科学 风险分析(工程) 工程类 模糊逻辑 入侵检测系统 数据挖掘 人工智能 量子力学 医学 电信 操作系统 物理 天线(收音机)
作者
Yujie Huang,Zhipeng Zhang,Yu Tao,Hao Hu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101726-101726 被引量:13
标识
DOI:10.1016/j.aei.2022.101726
摘要

With the increasing traveling speed of railway transportation, rail right-of-way intrusions can cause high-consequence accidents and pose severe challenges to railway safety. Although intrusion detection technologies have been widely studied and applied, they can only support in-event inspection and post-event control. In the current complex environment, there is a critical need to analyze the causal chain of railway intrusions and mitigate safety risks before or during the risk evolution process. This paper developed a novel methodological framework on the cause-consequence model based on the text mining techniques and fuzzy bow-tie modeling to systematically investigate the railway intrusion risks. In order to mine both critical factors and their interrelationships, a lexical co-occurrence analysis was carried out on a customized corpus of intrusion accident recordings. Then structured bow-tie diagrams were developed based on the networks generated by unstructured data. To overcome the data uncertainty issue, this paper utilized cause-consequence-based probabilistic analysis and fuzzy theory to quantify the risks involving the occurrence probability of top events and outcomes in terms of expert judgements. The application of the proposed bow-tie model was demonstrated based on the case of the Hualien Derailment accident. The findings based on the bow-tie model and historical accidents in this research have systematically summarized basic events and causal chains. Ultimately, they can be utilized by researchers and practitioners both to identify the critical risk factors and enhance railway safety via proactive and reactive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮若翠完成签到,获得积分10
刚刚
落雪完成签到 ,获得积分10
1秒前
Ava应助风中的棒棒糖采纳,获得10
3秒前
风起枫落完成签到 ,获得积分10
3秒前
可靠诗筠完成签到 ,获得积分10
3秒前
故意的怜晴完成签到 ,获得积分10
5秒前
一粟的粉r完成签到 ,获得积分10
6秒前
Jimmy_King完成签到 ,获得积分10
17秒前
tangzanwayne完成签到 ,获得积分10
17秒前
19秒前
心灵美草丛完成签到,获得积分10
20秒前
652183758完成签到 ,获得积分10
21秒前
23秒前
热带蚂蚁完成签到 ,获得积分10
23秒前
1002SHIB完成签到,获得积分10
26秒前
27秒前
27秒前
nihaolaojiu完成签到,获得积分10
27秒前
sheetung完成签到,获得积分10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
麦田麦兜完成签到,获得积分10
29秒前
洋洋发布了新的文献求助20
31秒前
lling完成签到 ,获得积分10
34秒前
35秒前
Lny发布了新的文献求助20
37秒前
孟寐以求完成签到 ,获得积分10
42秒前
1111完成签到 ,获得积分10
45秒前
su完成签到 ,获得积分0
47秒前
wBw完成签到,获得积分0
48秒前
耍酷寻双完成签到 ,获得积分10
57秒前
善良的蛋挞完成签到,获得积分10
58秒前
FFFFFF完成签到 ,获得积分10
1分钟前
Moonchild完成签到 ,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
1分钟前
1分钟前
枯叶蝶完成签到 ,获得积分10
1分钟前
上官若男应助洋洋采纳,获得10
1分钟前
Judy完成签到 ,获得积分0
1分钟前
鱼儿游完成签到 ,获得积分10
1分钟前
迷你的夜天完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029