Serial Cascaded Deep Feature Extraction-based Adaptive Attention Dilated model for Crop Recommendation Framework

计算机科学 特征(语言学) 特征提取 人工智能 模式识别(心理学) 数据挖掘 哲学 语言学
作者
D. Latha,Praveen Kumar Ramajayam
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111790-111790
标识
DOI:10.1016/j.asoc.2024.111790
摘要

Effective crop farming depends on wise selection of crops. It is an essential factor that has to be fulfilled before beginning an agricultural endeavor. Conventionally, the crop that has to be grown is selected without considering the location and cultivated site's characteristics by only considering its profit and demand on the market. Choosing the best crop for the circumstances can minimize the need for additional fertilizer and water for irrigation and help in attaining enhanced crop yield. Therefore, choosing the right crop is crucial for a successful agricultural situation. Thus, a novel crop recommendation model by considering the soil and geographical conditions is developed to aid the farmers in choosing the appropriate crop for the right condition so that the overall production can be enhanced to increase the overall profit and decrease the losses faced by the farmers. At first, a certain geographical area is selected, and the ideal parameters for growing a particular plant are gathered from the standard database. Next, the deep optimal features are extracted using a Serial Cascaded network in which an autoencoder is cascaded with a "Dimensional Convolutional Neural Network (1DCNN)" from the gathered data. The obtained deep features are optimally selected using the developed Modified Movement Territory of Fire Hawk Optimizer (MMTFHO). These optimally selected features are given to the Adaptive and Attention-based Hybrid Network (AAHNet) in which "Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM)" are utilized for choosing the right crop for the provided geographical condition. The parameters in the AAHNet are optimized using the same enhanced MMTFHO algorithm for improving the precision of the appropriate crop selection process. The final prediction of crops for the given geographical condition is obtained from the AAHNet. The final or overall rating of the recommended approach regarding accuracy metrics is 96.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悲伤半导体应助wyg117采纳,获得30
刚刚
刚刚
科目三应助Ambi采纳,获得10
1秒前
深情安青应助栗子采纳,获得10
1秒前
wzgkeyantong发布了新的文献求助10
2秒前
3秒前
常温常压发布了新的文献求助10
3秒前
3秒前
罗C完成签到,获得积分10
4秒前
5秒前
lllll完成签到,获得积分10
5秒前
6秒前
风趣烧鹅完成签到,获得积分10
6秒前
JWKim完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
开心凡旋完成签到,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
安德鲁森完成签到 ,获得积分10
7秒前
xx发布了新的文献求助10
9秒前
Lucas应助zhitong采纳,获得10
9秒前
9秒前
洋葱超可爱完成签到,获得积分10
10秒前
没事哒完成签到,获得积分20
12秒前
fxy发布了新的文献求助10
12秒前
全球完成签到,获得积分10
12秒前
三杠发布了新的文献求助10
12秒前
常温常压完成签到,获得积分10
13秒前
快乐的晓刚完成签到,获得积分10
13秒前
14秒前
carza发布了新的文献求助10
15秒前
momo完成签到 ,获得积分10
15秒前
Neo完成签到,获得积分10
15秒前
16秒前
wwww完成签到,获得积分10
16秒前
华仔应助曾无忧采纳,获得10
17秒前
呆萌滑板完成签到 ,获得积分10
18秒前
Anonymous完成签到,获得积分10
19秒前
gjy完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162567
求助须知:如何正确求助?哪些是违规求助? 2813460
关于积分的说明 7900578
捐赠科研通 2473036
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175