亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Serial Cascaded Deep Feature Extraction-based Adaptive Attention Dilated model for Crop Recommendation Framework

计算机科学 特征(语言学) 特征提取 人工智能 模式识别(心理学) 数据挖掘 语言学 哲学
作者
D. Latha,Praveen Kumar Ramajayam
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111790-111790
标识
DOI:10.1016/j.asoc.2024.111790
摘要

Effective crop farming depends on wise selection of crops. It is an essential factor that has to be fulfilled before beginning an agricultural endeavor. Conventionally, the crop that has to be grown is selected without considering the location and cultivated site's characteristics by only considering its profit and demand on the market. Choosing the best crop for the circumstances can minimize the need for additional fertilizer and water for irrigation and help in attaining enhanced crop yield. Therefore, choosing the right crop is crucial for a successful agricultural situation. Thus, a novel crop recommendation model by considering the soil and geographical conditions is developed to aid the farmers in choosing the appropriate crop for the right condition so that the overall production can be enhanced to increase the overall profit and decrease the losses faced by the farmers. At first, a certain geographical area is selected, and the ideal parameters for growing a particular plant are gathered from the standard database. Next, the deep optimal features are extracted using a Serial Cascaded network in which an autoencoder is cascaded with a "Dimensional Convolutional Neural Network (1DCNN)" from the gathered data. The obtained deep features are optimally selected using the developed Modified Movement Territory of Fire Hawk Optimizer (MMTFHO). These optimally selected features are given to the Adaptive and Attention-based Hybrid Network (AAHNet) in which "Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM)" are utilized for choosing the right crop for the provided geographical condition. The parameters in the AAHNet are optimized using the same enhanced MMTFHO algorithm for improving the precision of the appropriate crop selection process. The final prediction of crops for the given geographical condition is obtained from the AAHNet. The final or overall rating of the recommended approach regarding accuracy metrics is 96.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小花小宝和阿飞完成签到 ,获得积分10
刚刚
吴端完成签到,获得积分10
1秒前
贪玩老姆完成签到 ,获得积分10
6秒前
tj完成签到 ,获得积分10
11秒前
14秒前
阳佟水蓉完成签到,获得积分10
18秒前
20秒前
所所应助zhvjdb采纳,获得10
21秒前
22秒前
38秒前
42秒前
维颖发布了新的文献求助10
43秒前
科研通AI2S应助魏欣娜采纳,获得10
45秒前
48秒前
50秒前
浮浮世世发布了新的文献求助10
53秒前
54秒前
浮游应助科研通管家采纳,获得10
57秒前
CipherSage应助科研通管家采纳,获得10
57秒前
嘻嘻哈哈应助科研通管家采纳,获得10
57秒前
嘻嘻哈哈应助科研通管家采纳,获得10
57秒前
爆米花应助科研通管家采纳,获得10
57秒前
Cast_Lappland发布了新的文献求助10
58秒前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
1分钟前
馍夹菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Vivian发布了新的文献求助30
2分钟前
Fox完成签到,获得积分10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
维颖完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430