Serial Cascaded Deep Feature Extraction-based Adaptive Attention Dilated model for Crop Recommendation Framework

计算机科学 特征(语言学) 特征提取 人工智能 模式识别(心理学) 数据挖掘 哲学 语言学
作者
D. Latha,Praveen Kumar Ramajayam
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111790-111790
标识
DOI:10.1016/j.asoc.2024.111790
摘要

Effective crop farming depends on wise selection of crops. It is an essential factor that has to be fulfilled before beginning an agricultural endeavor. Conventionally, the crop that has to be grown is selected without considering the location and cultivated site's characteristics by only considering its profit and demand on the market. Choosing the best crop for the circumstances can minimize the need for additional fertilizer and water for irrigation and help in attaining enhanced crop yield. Therefore, choosing the right crop is crucial for a successful agricultural situation. Thus, a novel crop recommendation model by considering the soil and geographical conditions is developed to aid the farmers in choosing the appropriate crop for the right condition so that the overall production can be enhanced to increase the overall profit and decrease the losses faced by the farmers. At first, a certain geographical area is selected, and the ideal parameters for growing a particular plant are gathered from the standard database. Next, the deep optimal features are extracted using a Serial Cascaded network in which an autoencoder is cascaded with a "Dimensional Convolutional Neural Network (1DCNN)" from the gathered data. The obtained deep features are optimally selected using the developed Modified Movement Territory of Fire Hawk Optimizer (MMTFHO). These optimally selected features are given to the Adaptive and Attention-based Hybrid Network (AAHNet) in which "Gated Recurrent Unit (GRU), and Long Short Term Memory (LSTM)" are utilized for choosing the right crop for the provided geographical condition. The parameters in the AAHNet are optimized using the same enhanced MMTFHO algorithm for improving the precision of the appropriate crop selection process. The final prediction of crops for the given geographical condition is obtained from the AAHNet. The final or overall rating of the recommended approach regarding accuracy metrics is 96.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小脑袋完成签到,获得积分10
1秒前
da发布了新的文献求助10
1秒前
1秒前
糕糕完成签到 ,获得积分10
2秒前
斯文尔阳发布了新的文献求助10
3秒前
wsc完成签到,获得积分10
3秒前
深情安青应助常诺采纳,获得50
4秒前
7秒前
Ebony发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助30
9秒前
李健应助nkpdsy采纳,获得10
9秒前
11秒前
11秒前
11秒前
斯文尔阳完成签到,获得积分10
11秒前
13秒前
cyh完成签到,获得积分10
13秒前
英姑应助文艺的枫叶采纳,获得10
13秒前
irfanshan发布了新的文献求助10
15秒前
LHF发布了新的文献求助10
16秒前
16秒前
stone完成签到,获得积分10
17秒前
可爱的函函应助Cookies采纳,获得10
18秒前
raziel完成签到,获得积分10
20秒前
123完成签到 ,获得积分10
20秒前
20秒前
慕青应助Ebony采纳,获得10
21秒前
高兴的易形完成签到,获得积分10
23秒前
荞面小肉包完成签到,获得积分10
24秒前
24秒前
小二郎应助杨仔采纳,获得10
26秒前
甜美的秋凌完成签到,获得积分10
26秒前
da发布了新的文献求助10
27秒前
xiaoyu应助一拳超人采纳,获得10
27秒前
qiukeyingying发布了新的文献求助10
28秒前
苏大脸完成签到,获得积分10
29秒前
29秒前
30秒前
华仔应助胡一把采纳,获得30
30秒前
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193