Explainable Machine Learning Model to Predict Overall Survival in Patients Treated With Palliative Radiotherapy for Bone Metastases

医学 协变量 预期寿命 放射治疗 逻辑回归 内科学 生存分析 肿瘤科 机器学习 计算机科学 人口 环境卫生
作者
S. Cilla,R Rossi,Ragnhild Habberstad,Pål Klepstad,Monia Dall’Agata,Stein Kaasa,Vanessa Valenti,Costanza Maria Donati,Marco Maltoni,A.G. Morganti
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.24.00027
摘要

PURPOSE The estimation of prognosis and life expectancy is critical in the care of patients with advanced cancer. To aid clinical decision making, we build a prognostic strategy combining a machine learning (ML) model with explainable artificial intelligence to predict 1-year survival after palliative radiotherapy (RT) for bone metastasis. MATERIALS AND METHODS Data collected in the multicentric PRAIS trial were extracted for 574 eligible adults diagnosed with metastatic cancer. The primary end point was the overall survival (OS) at 1 year (1-year OS) after the start of RT. Candidate covariate predictors consisted of 13 clinical and tumor-related pre-RT patient characteristics, seven dosimetric and treatment-related variables, and 45 pre-RT laboratory variables. ML models were developed and internally validated using the Python package. The effectiveness of each model was evaluated in terms of discrimination. A Shapley Additive Explanations (SHAP) explainability analysis to infer the global and local feature importance and to understand the reasons for correct and misclassified predictions was performed. RESULTS The best-performing model for the classification of 1-year OS was the extreme gradient boosting algorithm, with AUC and F1-score values equal to 0.805 and 0.802, respectively. The SHAP technique revealed that higher chance of 1-year survival is associated with low values of interleukin-8, higher values of hemoglobin and lymphocyte count, and the nonuse of steroids. CONCLUSION An explainable ML approach can provide a reliable prediction of 1-year survival after RT in patients with advanced cancer. The implementation of SHAP analysis provides an intelligible explanation of individualized risk prediction, enabling oncologists to identify the best strategy for patient stratification and treatment selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
doudou完成签到 ,获得积分10
1秒前
BCS完成签到,获得积分10
1秒前
领导范儿应助KYN采纳,获得10
1秒前
2秒前
独特的莫言完成签到,获得积分10
4秒前
lin发布了新的文献求助10
5秒前
aero完成签到 ,获得积分10
7秒前
123号完成签到,获得积分10
9秒前
充电宝应助TT采纳,获得10
11秒前
12秒前
12秒前
英姑应助荒野星辰采纳,获得10
14秒前
14秒前
YHY完成签到,获得积分10
16秒前
科研通AI5应助魏伯安采纳,获得10
16秒前
caoyy发布了新的文献求助10
16秒前
17秒前
18秒前
张喻235532完成签到,获得积分10
19秒前
失眠虔纹发布了新的文献求助10
20秒前
香蕉觅云应助糊涂的小伙采纳,获得10
20秒前
20秒前
sutharsons应助科研通管家采纳,获得200
22秒前
打打应助科研通管家采纳,获得10
22秒前
axin应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
22秒前
李健应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
23秒前
lu应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得10
23秒前
研友_MLJldZ发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849