Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
王丽娟应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
朴西西发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Alces完成签到,获得积分10
3秒前
JamesPei应助Hathaway采纳,获得10
3秒前
义气的银耳汤完成签到 ,获得积分10
3秒前
胡思全发布了新的文献求助10
4秒前
吕如音完成签到,获得积分10
4秒前
wenhuanwenxian完成签到 ,获得积分10
4秒前
我是老大应助宇文一采纳,获得10
4秒前
琳lin完成签到,获得积分10
4秒前
hanye完成签到 ,获得积分10
4秒前
4秒前
虤铠发布了新的文献求助30
4秒前
5秒前
jiannanwu发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798