亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaha完成签到,获得积分10
4秒前
今后应助opp采纳,获得10
16秒前
xiying完成签到 ,获得积分10
23秒前
Dreamchaser完成签到,获得积分10
47秒前
qiu发布了新的文献求助10
48秒前
研友_850aeZ完成签到,获得积分0
57秒前
小超人完成签到 ,获得积分10
57秒前
大胆的自行车完成签到 ,获得积分10
1分钟前
hwjg发布了新的文献求助10
1分钟前
Murphy完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
2分钟前
sube完成签到 ,获得积分10
2分钟前
NI完成签到 ,获得积分10
2分钟前
桐桐应助ceeray23采纳,获得20
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
Panini完成签到 ,获得积分10
2分钟前
2分钟前
圆润润呐发布了新的文献求助10
2分钟前
自信书文完成签到 ,获得积分10
2分钟前
orixero应助萌道采纳,获得10
2分钟前
甜美的沅完成签到 ,获得积分10
2分钟前
2分钟前
opp发布了新的文献求助10
3分钟前
顺心成仁完成签到 ,获得积分10
3分钟前
义气幼珊完成签到 ,获得积分10
3分钟前
耶椰耶完成签到 ,获得积分10
3分钟前
李健的小迷弟应助142857采纳,获得10
3分钟前
阳光大山完成签到 ,获得积分10
3分钟前
CodeCraft应助莱万特采纳,获得10
3分钟前
3分钟前
3分钟前
萌道发布了新的文献求助10
3分钟前
香蕉觅云应助wang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558406
求助须知:如何正确求助?哪些是违规求助? 4643430
关于积分的说明 14670992
捐赠科研通 4584754
什么是DOI,文献DOI怎么找? 2515164
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459808