Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助无私的大白采纳,获得50
刚刚
1秒前
风夏完成签到,获得积分10
2秒前
怕孤单的Hannah完成签到 ,获得积分10
2秒前
攒星星发布了新的文献求助10
2秒前
3秒前
3秒前
繁荣的代秋完成签到 ,获得积分10
4秒前
爱吃冬瓜发布了新的文献求助10
4秒前
4秒前
浅各发布了新的文献求助10
4秒前
4秒前
myl完成签到 ,获得积分10
5秒前
月影发布了新的文献求助10
6秒前
鳗鱼语山发布了新的文献求助10
7秒前
maohuibai发布了新的文献求助10
7秒前
zho应助高大的可仁采纳,获得10
7秒前
温酒叙人生完成签到,获得积分20
8秒前
8秒前
攒星星完成签到,获得积分10
10秒前
诚信求助发布了新的文献求助10
10秒前
哈哈哈完成签到,获得积分20
10秒前
蓝白关注了科研通微信公众号
11秒前
11秒前
12秒前
繁荣的谷蓝完成签到,获得积分10
12秒前
缓慢珠发布了新的文献求助20
12秒前
何何完成签到 ,获得积分10
13秒前
颜绮完成签到 ,获得积分10
13秒前
taozi完成签到,获得积分10
13秒前
阿泽发布了新的文献求助10
14秒前
lzp完成签到,获得积分20
14秒前
Gin完成签到 ,获得积分10
15秒前
科研通AI2S应助w1采纳,获得10
15秒前
16秒前
狂野忆文完成签到,获得积分20
16秒前
17秒前
17秒前
lzp发布了新的文献求助10
17秒前
小鱼发布了新的文献求助10
19秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975