Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
难过千易发布了新的文献求助10
2秒前
2秒前
3秒前
大神帮帮喔完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
5秒前
CipherSage应助山川遇月色采纳,获得10
6秒前
Hello应助失眠无声采纳,获得10
6秒前
所所应助短短采纳,获得10
6秒前
Singularity应助邓桂灿采纳,获得20
6秒前
还没想好发布了新的文献求助10
7秒前
7秒前
ChatGPT发布了新的文献求助10
7秒前
超人会飞233完成签到,获得积分20
7秒前
虚心的芹发布了新的文献求助10
7秒前
zhai发布了新的文献求助10
7秒前
8秒前
8秒前
祖百川发布了新的文献求助10
9秒前
Akim应助可耐的青雪采纳,获得10
9秒前
毛豆爸爸应助科研通管家采纳,获得40
9秒前
科目三应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
柯一一应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
rosy完成签到,获得积分10
10秒前
yar应助科研通管家采纳,获得10
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
xiaoxx发布了新的文献求助10
10秒前
shisui应助结实的半双采纳,获得30
10秒前
jiang发布了新的文献求助10
11秒前
猪猪hero应助wjx采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975250
求助须知:如何正确求助?哪些是违规求助? 3519625
关于积分的说明 11199055
捐赠科研通 3255962
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877358
科研通“疑难数据库(出版商)”最低求助积分说明 806298