Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heavennew完成签到,获得积分10
刚刚
1秒前
眼睛大樱桃完成签到,获得积分10
1秒前
Yuantian发布了新的文献求助10
2秒前
学吗你完成签到 ,获得积分10
2秒前
御青白少发布了新的文献求助10
3秒前
无尽夏完成签到,获得积分10
3秒前
Rylee发布了新的文献求助10
5秒前
5秒前
无私的念文完成签到 ,获得积分10
6秒前
充电宝应助Yuantian采纳,获得10
7秒前
水水完成签到,获得积分10
8秒前
sskr发布了新的文献求助10
8秒前
15327432191完成签到 ,获得积分10
9秒前
酷波er应助果汁采纳,获得10
9秒前
善学以致用应助程公子采纳,获得10
9秒前
海阔天空发布了新的文献求助10
9秒前
ChemistryZyh完成签到,获得积分10
10秒前
wensir完成签到,获得积分10
12秒前
斯文败类应助Rylee采纳,获得10
13秒前
养不熟的野猫完成签到,获得积分10
13秒前
sskr完成签到,获得积分10
13秒前
高文强完成签到,获得积分10
14秒前
15秒前
我是老大应助liu采纳,获得10
15秒前
领导范儿应助小熊软糖采纳,获得10
15秒前
华仔应助kevin采纳,获得10
16秒前
17秒前
18秒前
晴朗葡萄发布了新的文献求助30
18秒前
bkagyin应助冷艳的冬萱采纳,获得10
18秒前
19秒前
文献啊文献完成签到,获得积分10
20秒前
御青白少完成签到,获得积分10
21秒前
晨晨完成签到 ,获得积分10
21秒前
Christ发布了新的文献求助20
21秒前
大方的若山完成签到,获得积分10
21秒前
董啊发布了新的文献求助10
21秒前
Wayne发布了新的文献求助10
22秒前
slby完成签到 ,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048