Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西发布了新的文献求助10
刚刚
77完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
汉堡包应助狂野半青采纳,获得10
2秒前
充电宝应助WB87采纳,获得10
2秒前
黎黎发布了新的文献求助10
2秒前
凌云发布了新的文献求助10
2秒前
小火炉的家完成签到,获得积分10
3秒前
执着的以筠完成签到 ,获得积分10
4秒前
木九黎发布了新的文献求助10
4秒前
xiaokezhang发布了新的文献求助10
5秒前
月亮发布了新的文献求助50
5秒前
常温可乐应助忧郁凌波采纳,获得10
5秒前
Meng完成签到,获得积分10
6秒前
大脸猫完成签到,获得积分10
6秒前
科研通AI6应助琥珀采纳,获得10
7秒前
胖虎发布了新的文献求助10
7秒前
任丽完成签到,获得积分10
7秒前
断桥烟雨完成签到,获得积分10
7秒前
8秒前
8秒前
zzcs33完成签到,获得积分20
8秒前
淡淡土豆应助77采纳,获得10
8秒前
8秒前
9秒前
玛卡巴卡发布了新的文献求助10
9秒前
Orange应助科研小能手采纳,获得10
9秒前
9秒前
NexusExplorer应助端庄的冬瓜采纳,获得10
9秒前
10秒前
gaoyunfeng完成签到,获得积分20
10秒前
10秒前
11秒前
英姑应助忐忑的鞋垫采纳,获得10
11秒前
hnlgdx完成签到,获得积分10
11秒前
橘子完成签到,获得积分20
11秒前
12秒前
zyx应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511226
求助须知:如何正确求助?哪些是违规求助? 4605908
关于积分的说明 14496262
捐赠科研通 4541043
什么是DOI,文献DOI怎么找? 2488328
邀请新用户注册赠送积分活动 1470437
关于科研通互助平台的介绍 1442823