Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zd发布了新的文献求助10
刚刚
铁甲小宝发布了新的文献求助10
1秒前
LHH发布了新的文献求助10
1秒前
清脆平凡完成签到,获得积分10
2秒前
summer完成签到,获得积分0
2秒前
tingxiaomei完成签到,获得积分10
2秒前
XL发布了新的文献求助10
3秒前
月上半山发布了新的文献求助10
3秒前
3秒前
exile完成签到,获得积分10
3秒前
勤奋太君完成签到,获得积分10
3秒前
郭慢慢发布了新的文献求助10
3秒前
4秒前
阿翔发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助20
4秒前
学术女战士完成签到,获得积分10
4秒前
淡淡的雪完成签到,获得积分10
5秒前
5秒前
5秒前
zgrmws应助外向小猫咪采纳,获得10
5秒前
5秒前
6秒前
xubobo完成签到,获得积分10
6秒前
华仔应助花开不败采纳,获得10
6秒前
mistletoe完成签到,获得积分10
6秒前
领导范儿应助路远采纳,获得10
6秒前
曲少完成签到,获得积分10
6秒前
爆米花应助普鲁卡因采纳,获得10
6秒前
7秒前
子车茗应助孤独如曼采纳,获得20
8秒前
Daisy发布了新的文献求助10
8秒前
8秒前
小离心机完成签到,获得积分10
8秒前
NexusExplorer应助zd采纳,获得10
9秒前
开朗紫完成签到,获得积分10
9秒前
9秒前
幽默身影发布了新的文献求助10
9秒前
天天快乐应助mhbknight采纳,获得10
9秒前
chun123完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997