Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
1秒前
深情安青应助css1997采纳,获得10
1秒前
訫乐完成签到,获得积分10
1秒前
踏实的研完成签到,获得积分10
1秒前
Zephyr完成签到,获得积分10
1秒前
2秒前
充电宝应助tangz采纳,获得10
2秒前
2秒前
Betaremains发布了新的文献求助10
2秒前
孟芷旭孟芷旭完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
3秒前
4秒前
xiuxianpanda完成签到 ,获得积分20
4秒前
典雅的静发布了新的文献求助10
5秒前
5秒前
月亮不说话完成签到 ,获得积分10
5秒前
5秒前
wangayting发布了新的文献求助30
6秒前
6秒前
小黑完成签到,获得积分10
6秒前
麦益颖完成签到,获得积分10
6秒前
7秒前
喵喵喵发布了新的文献求助10
7秒前
LiuXinping完成签到,获得积分10
7秒前
8秒前
小烦完成签到 ,获得积分10
8秒前
ZhiZhengWang发布了新的文献求助10
8秒前
Neko完成签到,获得积分10
8秒前
Betaremains完成签到,获得积分10
9秒前
小李爱吃大西瓜完成签到,获得积分10
9秒前
9秒前
fanglf发布了新的文献求助10
10秒前
10秒前
积极衫完成签到,获得积分10
11秒前
MR_Z完成签到,获得积分10
11秒前
听话的萤完成签到,获得积分10
11秒前
从容雨筠发布了新的文献求助10
11秒前
YukiXu完成签到,获得积分10
12秒前
阿毛发布了新的文献求助10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517