亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海绵宝宝完成签到 ,获得积分10
14秒前
Jasper应助阳光的星月采纳,获得10
20秒前
TXZ06完成签到,获得积分10
29秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
打打应助朴素海亦采纳,获得10
40秒前
方汀应助朴素海亦采纳,获得10
1分钟前
1分钟前
dd完成签到,获得积分10
2分钟前
2分钟前
开朗大雁完成签到 ,获得积分10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
荷兰香猪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
阳光的星月完成签到,获得积分10
2分钟前
研友_8RyzBZ完成签到,获得积分20
2分钟前
2分钟前
2分钟前
huahuaaixuexi完成签到,获得积分10
2分钟前
2分钟前
情怀应助成成鹅了采纳,获得10
2分钟前
苗龙伟完成签到 ,获得积分10
2分钟前
dd发布了新的文献求助200
3分钟前
852应助成成鹅了采纳,获得30
3分钟前
林妹妹完成签到 ,获得积分10
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
4分钟前
冷酷的如松完成签到,获得积分10
4分钟前
4分钟前
成成鹅了发布了新的文献求助10
4分钟前
4分钟前
4分钟前
丘比特应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
成成鹅了发布了新的文献求助30
4分钟前
LX1005完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Orange应助成成鹅了采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107