Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [MDPI AG]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dorren完成签到,获得积分10
1秒前
十米完成签到 ,获得积分10
1秒前
2秒前
沉沉完成签到 ,获得积分0
2秒前
星期五应助科研通管家采纳,获得10
7秒前
Xiaoxiao应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Wind应助wwl采纳,获得10
9秒前
科研通AI2S应助单薄映易采纳,获得10
9秒前
11秒前
甜屁儿完成签到 ,获得积分10
11秒前
ECHO完成签到,获得积分10
12秒前
anz完成签到 ,获得积分10
12秒前
LIJIngcan完成签到 ,获得积分10
14秒前
黎黎原上草完成签到,获得积分10
16秒前
水云发布了新的文献求助10
17秒前
迷路绮南完成签到 ,获得积分10
18秒前
dingtao发布了新的文献求助80
19秒前
又又完成签到 ,获得积分10
20秒前
yinyin完成签到 ,获得积分10
22秒前
王旭东完成签到 ,获得积分10
23秒前
南风完成签到 ,获得积分10
23秒前
splemeth完成签到,获得积分10
24秒前
无私的电灯胆完成签到,获得积分10
27秒前
朱朱完成签到 ,获得积分10
27秒前
ll完成签到 ,获得积分10
27秒前
坚强的铅笔完成签到 ,获得积分10
28秒前
資鼒完成签到 ,获得积分10
29秒前
。。完成签到 ,获得积分10
31秒前
sunnyqqz完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
宜菏发布了新的文献求助10
32秒前
32秒前
吉以寒完成签到,获得积分10
39秒前
Gu0F1完成签到 ,获得积分10
40秒前
花卷完成签到,获得积分10
40秒前
40秒前
董老师完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086