Comparative Analysis of the Seasonal Driving Factors of the Urban Heat Environment Using Machine Learning: Evidence from the Wuhan Urban Agglomeration, China, 2020

城市群 中国 城市热岛 集聚经济 环境科学 气象学 经济地理学 气候学 地理 经济增长 经济 地质学 考古
作者
Ce Xu,Gaoliu Huang,Maomao Zhang
出处
期刊:Atmosphere [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 671-671 被引量:2
标识
DOI:10.3390/atmos15060671
摘要

With the ongoing advancement of globalization significantly impacting the ecological environment, the continuous rise in the Land Surface Temperature (LST) is increasingly jeopardizing human production and living conditions. This study aims to investigate the seasonal variations in the LST and its driving factors using mathematical models. Taking the Wuhan Urban Agglomeration (WHUA) as a case study, it explores the seasonal characteristics of the LST and employs Principal Component Analysis (PCA) to categorize the driving factors. Additionally, it compares traditional models with machine-learning models to select the optimal model for this investigation. The main conclusions are as follows. (1) The WHUA’s LST exhibits significant differences among seasons and demonstrates distinct spatial-clustering characteristics in different seasons. (2) Compared to traditional geographic spatial models, Extreme Gradient Boosting (XGBoost) shows better explanatory power in investigating the driving effects of the LST. (3) Human Activity (HA) dominates the influence throughout the year and shows a significant positive correlation with the LST; Physical Geography (PG) exhibits a negative correlation with the LST; Climate and Weather (CW) show a similar variation to the PG, peaking in the transition; and the Landscape Pattern (LP) shows a weak positive correlation with the LST, peaking in winter while being relatively inconspicuous in summer and the transition. Finally, through comparative analysis of multiple driving factors and models, this study constructs a framework for exploring the seasonal features and driving factors of the LST, aiming to provide references and guidance for the development of the WHUA and similar regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助罗某人采纳,获得10
1秒前
1秒前
赘婿应助烧酒采纳,获得10
2秒前
Qintt发布了新的文献求助10
3秒前
hy1234完成签到 ,获得积分10
3秒前
3秒前
槿萱完成签到,获得积分10
4秒前
ll给STP顶峰相见的求助进行了留言
4秒前
棒棒的红红完成签到,获得积分10
5秒前
南楼小阁主完成签到,获得积分10
6秒前
燕燕于飞发布了新的文献求助10
7秒前
7秒前
8秒前
anz完成签到,获得积分10
9秒前
9秒前
Ryan完成签到,获得积分10
10秒前
10秒前
鲸落发布了新的文献求助10
10秒前
NexusExplorer应助Cindy采纳,获得10
11秒前
11秒前
苏东方完成签到,获得积分10
11秒前
12秒前
12秒前
蓦然回首发布了新的文献求助10
14秒前
迷人的冰安完成签到,获得积分10
14秒前
CipherSage应助燕燕于飞采纳,获得10
16秒前
xiao123789发布了新的文献求助10
16秒前
randomname发布了新的文献求助10
16秒前
dong应助FLZLC采纳,获得10
17秒前
田様应助老毛采纳,获得10
17秒前
罗某人发布了新的文献求助10
17秒前
17秒前
偷乐发布了新的文献求助10
18秒前
19秒前
20秒前
小小富应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
星辰大海应助gwff采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
wy.he应助科研通管家采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836