Facial Emotion Detection: A Comprehensive Survey

悲伤 面部表情 计算机科学 幸福 卷积神经网络 惊喜 人工智能 深度学习 愤怒 情绪分类 支持向量机 厌恶 特征(语言学) 随机森林 机器学习 心理学 社会心理学 语言学 哲学
作者
C. M. Prashanth,D. Sree Lakshmi,Mandadi Sai Gangadhar,K. Swathi,Vuda Sreenivasa Rao
标识
DOI:10.1109/icc-robins60238.2024.10533999
摘要

Facial emotion is most important in human aspects as it communicates in a nonverbal way. This non-verbal form of expression significantly enhances social interactions, enabling individuals to comprehend and respond to each other's feelings Facial emotion detection is a process in which identifying and recognizing human facial emotions based on their expressions is necessary. Analyzing facial features like eyes, mouth, and eyebrows to identify emotions such as happiness, sadness, anger, and surprise, is crucial in making a better prediction. Moreover, facial expressions are crucial in various professional fields like law, knowing whether a person is dishonest or not, psychology where recognizing the emotion of an individual is necessary for analyzing the mental well-being of a person, additionally in the Security and Surveillance domain where identifying suspicious behavior or emotional states of a person in public spaces which helps in contributing to the improvement of public safety measures. There are many Machine Learning Algorithms like Support Vector Machines, Decision Trees, and Random Forests which are initially used in identifying emotions based on facial expressions. But Compared to Traditional Facial Recognition using Machine Learning Algorithms, Deep learning models like Convolutional Neural Networks (CNN) have shown much better accuracy because they can be able to localize complex features and Hierarchical Feature Representation helps in segmenting the features into low and high levels this enables the model to identify minute things. The primary objective of this paper is to make a survey on ML and deep learning algorithms and their significance in Facial emotion detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssssixx完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
Forever MJ完成签到,获得积分10
3秒前
ssssixx发布了新的文献求助10
4秒前
4秒前
半夏微凉关注了科研通微信公众号
5秒前
5秒前
5秒前
的呀呀完成签到,获得积分10
5秒前
pluto应助CheetahAzure采纳,获得10
6秒前
南风不竞发布了新的文献求助10
6秒前
科研通AI2S应助欣慰问柳采纳,获得10
6秒前
整齐紫翠完成签到,获得积分10
6秒前
咯咚发布了新的文献求助10
7秒前
大胆土豆发布了新的文献求助10
7秒前
7秒前
GG发布了新的文献求助10
8秒前
小其发布了新的文献求助10
8秒前
LIAO发布了新的文献求助30
8秒前
9秒前
俏皮的巨人完成签到,获得积分10
9秒前
sch应助张乐渝采纳,获得20
9秒前
9秒前
9秒前
紫瓜完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
小蘑菇应助yy采纳,获得30
11秒前
11秒前
陈橘子皮发布了新的文献求助10
12秒前
yukiing完成签到,获得积分10
12秒前
NexusExplorer应助外向的烨霖采纳,获得10
13秒前
科研通AI2S应助lilia采纳,获得10
13秒前
似是而非应助球球采纳,获得10
13秒前
xr发布了新的文献求助10
14秒前
小马甲应助刘燕采纳,获得30
14秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259477
求助须知:如何正确求助?哪些是违规求助? 2901093
关于积分的说明 8313913
捐赠科研通 2570455
什么是DOI,文献DOI怎么找? 1396534
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631566