Understanding the phytotoxic effects of organic contaminants on rice through predictive modeling with molecular descriptors: A data-driven analysis

污染 环境化学 环境科学 化学 生化工程 环境工程 工程类 生物 生态学
作者
Shuyuan Wang,Jie Chen,Li Zhu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:476: 134953-134953
标识
DOI:10.1016/j.jhazmat.2024.134953
摘要

The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
坛子发布了新的文献求助10
刚刚
科目三应助毛77采纳,获得10
刚刚
Jasper应助陈一采纳,获得10
1秒前
Kasom完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
领导范儿应助石土土采纳,获得10
2秒前
wenjiaolin完成签到,获得积分10
3秒前
CodeCraft应助粉色娇嫩采纳,获得10
3秒前
研友_knggYn发布了新的文献求助10
3秒前
3秒前
你好完成签到,获得积分10
4秒前
4秒前
热心凡雁发布了新的文献求助10
4秒前
CipherSage应助无心的复天采纳,获得10
4秒前
yciDo完成签到,获得积分10
5秒前
科研通AI5应助reegdsgsfd采纳,获得10
5秒前
烂漫的筮发布了新的文献求助10
6秒前
wangyapeng完成签到,获得积分10
6秒前
6秒前
02完成签到,获得积分10
7秒前
7秒前
青松完成签到,获得积分20
7秒前
7秒前
悉达多发布了新的文献求助10
7秒前
7秒前
不要水肿了完成签到,获得积分10
8秒前
Jackson发布了新的文献求助10
8秒前
热心凡雁完成签到,获得积分10
8秒前
8秒前
WSGQT发布了新的文献求助10
8秒前
9秒前
科研通AI5应助烨采采纳,获得10
9秒前
9秒前
10秒前
10秒前
小v1212发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154942
求助须知:如何正确求助?哪些是违规求助? 4350694
关于积分的说明 13546246
捐赠科研通 4193517
什么是DOI,文献DOI怎么找? 2299960
邀请新用户注册赠送积分活动 1299897
关于科研通互助平台的介绍 1244949