Understanding the phytotoxic effects of organic contaminants on rice through predictive modeling with molecular descriptors: A data-driven analysis

污染 环境化学 环境科学 化学 生化工程 环境工程 工程类 生物 生态学
作者
Shuyuan Wang,Jie Chen,Li Zhu
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:476: 134953-134953
标识
DOI:10.1016/j.jhazmat.2024.134953
摘要

The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘旭阳完成签到,获得积分10
刚刚
刚刚
刚刚
星星泡饭完成签到,获得积分10
1秒前
1秒前
1秒前
King16完成签到,获得积分10
1秒前
1秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
jmy完成签到,获得积分10
2秒前
Leif应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
积极的板栗完成签到 ,获得积分10
2秒前
咯咚完成签到 ,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
maox1aoxin应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
QXS发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Liekkas发布了新的文献求助10
3秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759