Understanding the phytotoxic effects of organic contaminants on rice through predictive modeling with molecular descriptors: A data-driven analysis

污染 环境化学 环境科学 化学 生化工程 环境工程 工程类 生物 生态学
作者
Shuyuan Wang,Jie Chen,Li Zhu
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:476: 134953-134953
标识
DOI:10.1016/j.jhazmat.2024.134953
摘要

The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小二郎应助sea采纳,获得10
1秒前
wanci应助yanguowusheng采纳,获得10
1秒前
江峰发布了新的文献求助10
1秒前
默默纲发布了新的文献求助30
2秒前
丹尼耳背完成签到,获得积分20
2秒前
2秒前
骤雨时晴发布了新的文献求助10
3秒前
飘逸天亦发布了新的文献求助10
5秒前
赖驳完成签到,获得积分20
5秒前
852发布了新的文献求助10
5秒前
kdqiu完成签到,获得积分10
9秒前
人间炡气机完成签到 ,获得积分10
10秒前
11秒前
memory完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
如一发布了新的文献求助10
18秒前
qqq完成签到 ,获得积分10
18秒前
丹尼耳背发布了新的文献求助10
19秒前
19秒前
21秒前
桐桐应助飘逸天亦采纳,获得10
21秒前
22秒前
22秒前
22秒前
默默纲发布了新的文献求助30
23秒前
Jingshuiliushen完成签到,获得积分10
25秒前
march发布了新的文献求助10
26秒前
27秒前
现代数据线完成签到,获得积分10
27秒前
宰宰小熊完成签到 ,获得积分10
28秒前
wanglaaaa完成签到,获得积分20
28秒前
lemonade完成签到,获得积分10
29秒前
angle完成签到,获得积分10
29秒前
白华苍松发布了新的文献求助10
30秒前
AAA完成签到,获得积分10
30秒前
汉堡包应助高兴的晓蓝采纳,获得10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194