Serial platelet count as a dynamic prediction marker of hospital mortality among septic patients

医学 重症监护室 感染性休克 接收机工作特性 平均血小板体积 血小板 回顾性队列研究 一致性 内科学 危险系数 比例危险模型 重症监护 急诊医学 重症监护医学 败血症 置信区间
作者
Qian Ye,Xuan Wang,Xiaoshuang Xu,Jiajin Chen,David C. Christiani,Feng Chen,Ruyang Zhang,Yongyue Wei
出处
期刊:Burns & Trauma [Oxford University Press]
卷期号:12: tkae016-tkae016 被引量:21
标识
DOI:10.1093/burnst/tkae016
摘要

Abstract Background Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction. Methods We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points. Results Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic vs C-indexWeibull: 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic vs C-indexWeibull: 0.644 vs 0.617). Conclusions For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muyassar完成签到,获得积分10
1秒前
Canonical_SMILES完成签到 ,获得积分10
1秒前
英姑应助呆萌的青烟采纳,获得10
1秒前
冷酷的寒天完成签到,获得积分20
2秒前
老猫完成签到,获得积分10
2秒前
晚霞完成签到 ,获得积分10
3秒前
Jasper应助芷莯采纳,获得10
3秒前
zxt发布了新的文献求助10
3秒前
3秒前
充电宝应助小Yang采纳,获得10
5秒前
酷波er应助LZH采纳,获得10
5秒前
5秒前
木木完成签到,获得积分10
5秒前
5秒前
奥利给完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
10秒前
WZH完成签到,获得积分10
10秒前
小黄瓜896发布了新的文献求助10
10秒前
哈哈哈哈哈哈完成签到,获得积分10
11秒前
王青青完成签到,获得积分10
12秒前
邢晓彤完成签到 ,获得积分10
12秒前
芷莯发布了新的文献求助10
12秒前
子车茗应助小厉害采纳,获得20
13秒前
15秒前
16秒前
helpme完成签到,获得积分10
17秒前
高兴的小馒头完成签到,获得积分20
17秒前
19秒前
felix发布了新的文献求助10
19秒前
芷莯完成签到,获得积分10
20秒前
20秒前
mint完成签到,获得积分10
20秒前
自由凌丝完成签到,获得积分10
20秒前
思源应助徐徐徐徐徐徐徐采纳,获得10
20秒前
田様应助冷酷的寒天采纳,获得10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806