Serial platelet count as a dynamic prediction marker of hospital mortality among septic patients

医学 重症监护室 感染性休克 接收机工作特性 平均血小板体积 血小板 回顾性队列研究 一致性 内科学 危险系数 比例危险模型 重症监护 急诊医学 重症监护医学 败血症 置信区间
作者
Qian Ye,Xuan Wang,Xiaoshuang Xu,Jiajin Chen,David C. Christiani,Feng Chen,Ruyang Zhang,Yongyue Wei
出处
期刊:Burns & Trauma [Oxford University Press]
卷期号:12: tkae016-tkae016 被引量:21
标识
DOI:10.1093/burnst/tkae016
摘要

Abstract Background Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction. Methods We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points. Results Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic vs C-indexWeibull: 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic vs C-indexWeibull: 0.644 vs 0.617). Conclusions For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
白华苍松发布了新的文献求助10
1秒前
七安完成签到,获得积分10
2秒前
飞云发布了新的文献求助10
3秒前
橙子青发布了新的文献求助10
3秒前
杜儒完成签到,获得积分10
3秒前
优美紫槐应助当下最好采纳,获得10
3秒前
3秒前
Mei完成签到,获得积分10
3秒前
111发布了新的文献求助10
4秒前
嘿嘿应助oi采纳,获得10
4秒前
斯文败类应助111采纳,获得10
5秒前
阳光的鹏煊完成签到 ,获得积分10
5秒前
炎星语完成签到,获得积分10
5秒前
愉快的念梦完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
杜儒发布了新的文献求助50
8秒前
李王菲完成签到,获得积分10
8秒前
细腻的三问完成签到,获得积分10
8秒前
追鱼者也完成签到,获得积分10
8秒前
liyingbo发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
哈哈完成签到 ,获得积分10
13秒前
simon发布了新的文献求助10
13秒前
80s发布了新的文献求助10
14秒前
清秀斓完成签到,获得积分10
16秒前
小泡芙发布了新的文献求助10
16秒前
du发布了新的文献求助10
16秒前
Zyy发布了新的文献求助30
17秒前
hins完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057