Serial platelet count as a dynamic prediction marker of hospital mortality among septic patients

医学 血小板 内科学 急诊医学 重症监护医学
作者
Qian Ye,Xuan Wang,Xiaoshuang Xu,Jiajin Chen,David C. Christiani,Feng Chen,Ruyang Zhang,Yongyue Wei
出处
期刊:Burns & Trauma [Oxford University Press]
卷期号:12
标识
DOI:10.1093/burnst/tkae016
摘要

Abstract Background Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction. Methods We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points. Results Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic vs C-indexWeibull: 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic vs C-indexWeibull: 0.644 vs 0.617). Conclusions For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助陈陈陈采纳,获得10
刚刚
昊然的然完成签到,获得积分10
刚刚
超级的丹琴完成签到,获得积分10
刚刚
苗条的善斓完成签到,获得积分10
1秒前
曲终人散完成签到,获得积分10
1秒前
Ada爰完成签到 ,获得积分10
2秒前
狂野乌冬面完成签到 ,获得积分10
2秒前
美丽雨文完成签到,获得积分20
2秒前
往往超可爱完成签到 ,获得积分10
2秒前
May完成签到,获得积分20
2秒前
tytrack关注了科研通微信公众号
3秒前
123发布了新的文献求助10
3秒前
脑壳疼完成签到,获得积分10
4秒前
寻舟者完成签到,获得积分10
4秒前
TUZI完成签到 ,获得积分10
4秒前
小酸酸完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
LL发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助LYDC采纳,获得10
6秒前
sun完成签到,获得积分10
7秒前
棠唐樘完成签到,获得积分10
7秒前
容宣完成签到,获得积分10
7秒前
8秒前
端庄优雅完成签到 ,获得积分10
8秒前
8秒前
8秒前
钱财实景完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
眼睛大鹭洋完成签到 ,获得积分10
9秒前
10秒前
亚李发布了新的文献求助10
10秒前
nimonimo完成签到,获得积分10
10秒前
阳光发布了新的文献求助10
11秒前
cjf发布了新的文献求助10
12秒前
duo完成签到,获得积分10
12秒前
呵呵贺哈完成签到 ,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134302
求助须知:如何正确求助?哪些是违规求助? 2785212
关于积分的说明 7770748
捐赠科研通 2440808
什么是DOI,文献DOI怎么找? 1297536
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792