Serial platelet count as a dynamic prediction marker of hospital mortality among septic patients

医学 血小板 内科学 急诊医学 重症监护医学
作者
Qian Ye,Xuan Wang,Xiaoshuang Xu,Jiajin Chen,David C. Christiani,Feng Chen,Ruyang Zhang,Yongyue Wei
出处
期刊:Burns & Trauma [Oxford University Press]
卷期号:12 被引量:2
标识
DOI:10.1093/burnst/tkae016
摘要

Abstract Background Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction. Methods We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points. Results Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-indexDynamic vs C-indexWeibull: 0.713 vs 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-indexDynamic vs C-indexWeibull: 0.644 vs 0.617). Conclusions For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿飞飞完成签到,获得积分10
1秒前
1秒前
2秒前
67777发布了新的文献求助20
2秒前
2秒前
3秒前
ding应助AAAA采纳,获得10
3秒前
Thea完成签到,获得积分10
6秒前
Sharon发布了新的文献求助10
7秒前
7秒前
鱼儿完成签到,获得积分20
8秒前
入江直熠完成签到,获得积分10
9秒前
9秒前
科研小崩豆完成签到,获得积分10
9秒前
迟大猫应助yoozii采纳,获得10
10秒前
21发布了新的文献求助20
10秒前
火星上问芙完成签到,获得积分10
11秒前
11秒前
嘻嘻发布了新的文献求助10
11秒前
diode完成签到,获得积分10
12秒前
ghroth完成签到,获得积分10
13秒前
小二郎应助鱼儿采纳,获得10
13秒前
13秒前
13秒前
自然彤发布了新的文献求助10
14秒前
Sharon完成签到,获得积分10
14秒前
Jasper应助火星上问芙采纳,获得10
15秒前
研友_VZG7GZ应助ZJPPPP采纳,获得10
15秒前
16秒前
怕黑行恶完成签到,获得积分10
18秒前
18秒前
19秒前
小二郎应助哭泣的犀牛采纳,获得10
19秒前
19秒前
20秒前
科研通AI5应助一只杨采纳,获得10
20秒前
湖蓝色发布了新的文献求助10
23秒前
爱听歌的白开水完成签到 ,获得积分20
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673961
求助须知:如何正确求助?哪些是违规求助? 3229371
关于积分的说明 9785618
捐赠科研通 2939954
什么是DOI,文献DOI怎么找? 1611546
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344