Non-Destructive Prediction of the Mixed Mineral Pigment Content of Ancient Chinese Wall Paintings Based on Multiple Spectroscopic Techniques

矿物 颜料 矿物学 绘画 化学 内容(测量理论) 材料科学 分析化学(期刊) 地质学 艺术 冶金 环境化学 艺术史 数学 有机化学 数学分析
作者
Weihan Zou,Sok Yee Yeo
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:78 (7): 702-713 被引量:2
标识
DOI:10.1177/00037028241248199
摘要

This study first developed non-destructive and accurate methods to predict the relative contents of mixed mineral pigments in ancient Chinese wall paintings using multiple spectroscopic techniques. The colorimetry, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), ultraviolet–visible–near-infrared (UV-Vis-NIR) spectroscopy, and Raman spectroscopy were employed. Analyses were conducted including color difference, spectral reflection, ATR FT-IR spectra, and Raman mapping for simulated samples (malachite–lazurite mixed with rabbit glue samples) before and after aging. Models were then established for predicting the relative pigment contents of samples using UV-Vis-NIR and ATR FT-IR spectral data with Beer–Lambert law, and mathematical methods comprising principal component analysis (PCA) and nonlinear curve fitting. In particular, PCA and empty modeling methods combined with non-negative partial least squares were developed to predict the relative pigment contents based on Raman mapping data. The results demonstrated that approaches comprising PCA, mathematical model, and empty modeling based on the spectral data were effective at predicting the relative pigment contents. The predicted results obtained using the mathematical model based on UV-Vis-NIR spectra had an error of about 2%, and the best prediction based on ATR FT-IR spectra had an error of <3.6% at 1041 cm –1 . The errors for the predictions using PCA and empty modeling based on Raman mapping data were 0.01–9.30% and 0.28–7.15%, respectively. However, the predicted relative pigment contents obtained based on ATR FT-IR data combined with the Beer–Lambert law had higher errors. The findings of this study confirm the strong feasibility of using spectroscopic techniques for quantitatively analyzing mixed mineral pigments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆901234发布了新的文献求助10
1秒前
1秒前
ding应助巫马垣采纳,获得10
1秒前
1秒前
1秒前
毛毛弟发布了新的文献求助10
2秒前
Perry完成签到 ,获得积分10
4秒前
搜集达人应助安详的夏山采纳,获得10
4秒前
5秒前
怡然赛君发布了新的文献求助10
5秒前
科研通AI2S应助松哥采纳,获得10
7秒前
无问发布了新的文献求助10
7秒前
yinger1984完成签到,获得积分10
8秒前
fr0zen完成签到,获得积分10
9秒前
10秒前
支安白发布了新的文献求助10
10秒前
11秒前
车到山前必有路女士完成签到,获得积分10
11秒前
Capacition6完成签到,获得积分10
12秒前
xuan完成签到,获得积分10
12秒前
13秒前
悦_发布了新的文献求助10
14秒前
研友_VZGvVn发布了新的文献求助10
15秒前
15秒前
牙套狗狗发布了新的文献求助10
15秒前
科研通AI2S应助AMAME12采纳,获得10
15秒前
cocopepsi完成签到,获得积分10
17秒前
劲秉应助魔幻的毛巾采纳,获得20
17秒前
子车半烟发布了新的文献求助10
18秒前
21秒前
22秒前
大罗完成签到,获得积分10
22秒前
lhy12345完成签到,获得积分10
24秒前
好吃马匹发布了新的文献求助10
25秒前
26秒前
易璇璇完成签到,获得积分10
26秒前
张雯雯完成签到,获得积分10
26秒前
秦小琦发布了新的文献求助10
27秒前
27秒前
124332发布了新的文献求助50
27秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270487
求助须知:如何正确求助?哪些是违规求助? 2909871
关于积分的说明 8351344
捐赠科研通 2580345
什么是DOI,文献DOI怎么找? 1403446
科研通“疑难数据库(出版商)”最低求助积分说明 655729
邀请新用户注册赠送积分活动 635133