Adaptive and Iterative Learning with Multi-perspective Regularizations for Metal Artifact Reduction

小波 人工智能 小波变换 计算机科学 第二代小波变换 平稳小波变换 计算机视觉 模式识别(心理学) 离散小波变换
作者
Jianjia Zhang,Haiyang Mao,Dingyue Chang,Hengyong Yu,Weiwen Wu,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3354-3365
标识
DOI:10.1109/tmi.2024.3395348
摘要

Metal artifact reduction (MAR) is important for clinical diagnosis with CT images. The existing state-of-the-art deep learning methods usually suppress metal artifacts in sinogram or image domains or both. However, their performance is limited by the inherent characteristics of the two domains, i.e., the errors introduced by local manipulations in the sinogram domain would propagate throughout the whole image during backprojection and lead to serious secondary artifacts, while it is difficult to distinguish artifacts from actual image features in the image domain. To alleviate these limitations, this study analyzes the desirable properties of wavelet transform in-depth and proposes to perform MAR in the wavelet domain. First, wavelet transform yields components that possess spatial correspondence with the image, thereby preventing the spread of local errors to avoid secondary artifacts. Second, using wavelet transform could facilitate identification of artifacts from image since metal artifacts are mainly high-frequency signals. Taking these advantages of the wavelet transform, this paper decomposes an image into multiple wavelet components and introduces multi-perspective regularizations into the proposed MAR model. To improve the transparency and validity of the model, all the modules in the proposed MAR model are designed to reflect their mathematical meanings. In addition, an adaptive wavelet module is also utilized to enhance the flexibility of the model. To optimize the model, an iterative algorithm is developed. The evaluation on both synthetic and real clinical datasets consistently confirms the superior performance of the proposed method over the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGbond完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
4秒前
zhaoming完成签到 ,获得积分10
5秒前
zzw完成签到,获得积分10
5秒前
香蕉觅云应助娇气的背包采纳,获得10
6秒前
junhaowang完成签到 ,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
xzy998应助科研通管家采纳,获得10
8秒前
chelsea完成签到,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
TaoJ应助科研通管家采纳,获得10
8秒前
xzy998应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
yyyyyyyyjt发布了新的文献求助10
10秒前
chenxuuu发布了新的文献求助10
10秒前
砼砼发布了新的文献求助10
10秒前
yuan完成签到,获得积分10
11秒前
xiaokalami发布了新的文献求助10
12秒前
杨雨帆发布了新的文献求助10
13秒前
yuan发布了新的文献求助10
15秒前
16秒前
16秒前
梅倪完成签到,获得积分10
17秒前
华仔应助777采纳,获得10
18秒前
羊羊完成签到 ,获得积分10
18秒前
鱼鱼完成签到 ,获得积分10
19秒前
21秒前
李巧儿发布了新的文献求助10
21秒前
背书强发布了新的文献求助10
23秒前
25秒前
1vvvv发布了新的文献求助10
27秒前
CodeCraft应助文明8采纳,获得10
27秒前
Lucas应助chenxuuu采纳,获得10
28秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967