Multiaxial fatigue life prediction based on modular neural network pretrained with uniaxial fatigue data

模块化设计 人工神经网络 结构工程 疲劳试验 计算机科学 工程类 人工智能 操作系统
作者
Lei Gan,Anbin Wang,Zheng Zhong,Hao Wu
出处
期刊:Engineering Computations [Emerald Publishing Limited]
标识
DOI:10.1108/ec-11-2023-0852
摘要

Purpose Data-driven models are increasingly being used to predict the fatigue life of many engineering components exposed to multiaxial loading. However, owing to their high data requirements, they are cost-prohibitive and underperforming for application scenarios with limited data. Therefore, it is essential to develop an advanced model with good applicability to small-sample problems for multiaxial fatigue life assessment. Design/methodology/approach Drawing inspiration from the modeling strategy of empirical multiaxial fatigue models, a modular neural network-based model is proposed with assembly of three sub-networks in series: the first two sub-networks undergo pretraining using uniaxial fatigue data and are then connected to a third sub-network trained on a few multiaxial fatigue data. Moreover, general material properties and necessary loading parameters are used as inputs in place of explicit damage parameters, ensuring the universality of the proposed model. Findings Based on extensive experimental evaluations, it is demonstrated that the proposed model outperforms empirical models and conventional data-driven models in terms of prediction accuracy and data demand. It also holds good transferability across various multiaxial loading cases. Originality/value The proposed model explores a new avenue to incorporate uniaxial fatigue data into the data-driven modeling of multiaxial fatigue life, which can reduce the data requirement under the promise of maintaining good prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助lalaland采纳,获得10
刚刚
杨e发布了新的文献求助10
刚刚
小木又寸发布了新的文献求助10
刚刚
1秒前
1秒前
充电宝应助GGboooond采纳,获得10
1秒前
科研阿白发布了新的文献求助10
1秒前
1秒前
zjcbk985发布了新的文献求助10
1秒前
希望天下0贩的0应助159采纳,获得10
1秒前
火山发布了新的文献求助10
2秒前
JOE发布了新的文献求助20
2秒前
2秒前
3秒前
wikn发布了新的文献求助10
3秒前
科研通AI5应助Axiom采纳,获得10
3秒前
3秒前
island发布了新的文献求助10
3秒前
Ava应助dmeng采纳,获得10
4秒前
4秒前
打打应助番茄炒西红柿采纳,获得10
5秒前
5秒前
石昊发布了新的文献求助10
5秒前
YJ发布了新的文献求助10
6秒前
踏实明雪完成签到 ,获得积分10
6秒前
精明白凝发布了新的文献求助20
6秒前
虚生花完成签到,获得积分10
6秒前
6秒前
6秒前
JANE发布了新的文献求助10
6秒前
喵呜完成签到,获得积分10
7秒前
7秒前
8秒前
雪山飞龙发布了新的文献求助30
8秒前
8秒前
善学以致用应助骄傲yy采纳,获得30
8秒前
9秒前
万能图书馆应助stt采纳,获得10
9秒前
9秒前
Hilda发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013461
求助须知:如何正确求助?哪些是违规求助? 4254548
关于积分的说明 13258498
捐赠科研通 4057614
什么是DOI,文献DOI怎么找? 2219343
邀请新用户注册赠送积分活动 1228859
关于科研通互助平台的介绍 1151416