Multiaxial fatigue life prediction based on modular neural network pretrained with uniaxial fatigue data

模块化设计 人工神经网络 结构工程 疲劳试验 计算机科学 工程类 人工智能 操作系统
作者
Lei Gan,Anbin Wang,Zheng Zhong,Hao Wu
出处
期刊:Engineering Computations [Emerald (MCB UP)]
标识
DOI:10.1108/ec-11-2023-0852
摘要

Purpose Data-driven models are increasingly being used to predict the fatigue life of many engineering components exposed to multiaxial loading. However, owing to their high data requirements, they are cost-prohibitive and underperforming for application scenarios with limited data. Therefore, it is essential to develop an advanced model with good applicability to small-sample problems for multiaxial fatigue life assessment. Design/methodology/approach Drawing inspiration from the modeling strategy of empirical multiaxial fatigue models, a modular neural network-based model is proposed with assembly of three sub-networks in series: the first two sub-networks undergo pretraining using uniaxial fatigue data and are then connected to a third sub-network trained on a few multiaxial fatigue data. Moreover, general material properties and necessary loading parameters are used as inputs in place of explicit damage parameters, ensuring the universality of the proposed model. Findings Based on extensive experimental evaluations, it is demonstrated that the proposed model outperforms empirical models and conventional data-driven models in terms of prediction accuracy and data demand. It also holds good transferability across various multiaxial loading cases. Originality/value The proposed model explores a new avenue to incorporate uniaxial fatigue data into the data-driven modeling of multiaxial fatigue life, which can reduce the data requirement under the promise of maintaining good prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
迅速宛筠完成签到,获得积分10
刚刚
弄井完成签到,获得积分10
1秒前
充电宝应助无悔呀采纳,获得10
1秒前
1秒前
2秒前
000发布了新的文献求助10
2秒前
噔噔噔噔完成签到,获得积分10
3秒前
4秒前
刘怀蕊发布了新的文献求助10
5秒前
舒心赛凤发布了新的文献求助10
5秒前
文艺明杰完成签到,获得积分10
5秒前
6秒前
6秒前
wawuuuuu完成签到,获得积分10
6秒前
Akim应助谢家宝树采纳,获得10
6秒前
LU发布了新的文献求助10
6秒前
7秒前
pinging完成签到,获得积分10
7秒前
通~发布了新的文献求助10
8秒前
lai完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
隐形曼青应助彭彭采纳,获得10
10秒前
卡卡完成签到 ,获得积分10
10秒前
科目三应助季夏采纳,获得10
11秒前
11秒前
今后应助激动的一手采纳,获得10
11秒前
许中原完成签到,获得积分10
11秒前
无限的幻灵完成签到,获得积分10
11秒前
12秒前
整齐路灯完成签到,获得积分10
12秒前
紧张的梦岚应助跳跃乘风采纳,获得20
12秒前
简单水杯完成签到 ,获得积分10
12秒前
大胆的尔岚完成签到,获得积分10
13秒前
13秒前
Sene完成签到,获得积分10
13秒前
哈哈大笑发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762