疾病
医学
帕金森病
神经退行性变
内科学
生物信息学
蛋白质组学
生物
生物化学
基因
作者
Jenny Hällqvist,Michael Bartl,Mohammed Dakna,Sebastian Schade,Paolo Garagnani,Maria-Giulia Bacalini,Chiara Pirazzini,Kailash P. Bhatia,Sebastian R. Schreglmann,Mary Xylaki,Sandrina Weber,Marielle Ernst,Maria‐Lucia Muntean,Friederike Sixel‐Döring,Claudio Franceschi,Ivan Doykov,Justyna Śpiewak,Héloїse Vinette,Claudia Trenkwalder,Wendy Heywood,Kevin Mills,Brit Mollenhauer
标识
DOI:10.1038/s41467-024-48961-3
摘要
Abstract Parkinson’s disease is increasingly prevalent. It progresses from the pre-motor stage (characterised by non-motor symptoms like REM sleep behaviour disorder), to the disabling motor stage. We need objective biomarkers for early/pre-motor disease stages to be able to intervene and slow the underlying neurodegenerative process. Here, we validate a targeted multiplexed mass spectrometry assay for blood samples from recently diagnosed motor Parkinson’s patients ( n = 99), pre-motor individuals with isolated REM sleep behaviour disorder (two cohorts: n = 18 and n = 54 longitudinally), and healthy controls ( n = 36). Our machine-learning model accurately identifies all Parkinson patients and classifies 79% of the pre-motor individuals up to 7 years before motor onset by analysing the expression of eight proteins—Granulin precursor, Mannan-binding-lectin-serine-peptidase-2, Endoplasmatic-reticulum-chaperone-BiP, Prostaglaindin-H2-D-isomaerase, Interceullular-adhesion-molecule-1, Complement C3, Dickkopf-WNT-signalling pathway-inhibitor-3, and Plasma-protease-C1-inhibitor. Many of these biomarkers correlate with symptom severity. This specific blood panel indicates molecular events in early stages and could help identify at-risk participants for clinical trials aimed at slowing/preventing motor Parkinson’s disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI