Calibrating a multi-spectral scene for objective measurements of multi-band camera systems

计算机科学 计算机视觉 人工智能 遥感 计算机图形学(图像) 地质学
作者
Allen Parker,David P. Haefner,Stephen D. Burks
标识
DOI:10.1117/12.3012766
摘要

Modern electro-optical systems increasingly incorporate multiple electro-optical sensors, each adding unique wavebands, alignment considerations, and distortion effects. Laboratory testing of these systems traditionally requires multiple measurement setups to determine metrics such as inter-sensor alignment/distortion, near/far focus performance, latency, etc.; a multi-spectral scene has been created to support many simultaneous, objective measurements from a single mounting position. In some cases, a multi-spectral scene is the only way to test new system-of-system type units because traditional tests don't engage with or demonstrate their built-in algorithms (ex: fusion). In 2023 Parker et. al. developed a diverse multi-band scene with a diverse target set in order to test camera systems. In this correspondence, we describe a comprehensive and precise calibration of the scene. Among the methods used was a pair of reference cameras (reflective and emissive with a fixed extrinsic relations) translated across the entire field of view. The transformation matrices were determined to map pixel locations to angle; subsequent imaging of the target scene will yield precise locations of each feature, and comparisons between modelled and recorded images based on varied camera positions will validate the success of the calibration. This process will allow various measurements, across multiple wavebands, to be taken simultaneously and efficiently for a wide range of modern electro-optical systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hezhuyou完成签到,获得积分20
1秒前
飞乐扣完成签到 ,获得积分10
1秒前
buno应助屈昭阳采纳,获得10
1秒前
优美的觅珍完成签到,获得积分20
1秒前
冯佳祥发布了新的文献求助10
1秒前
aa发布了新的文献求助10
1秒前
852应助一只肥牛采纳,获得10
2秒前
lewis17发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
伯赏夜南发布了新的文献求助10
2秒前
orixero应助Niuniu采纳,获得10
2秒前
雪雪子完成签到,获得积分10
3秒前
3秒前
3秒前
胖狗完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
Owen应助edtaa采纳,获得10
5秒前
万能图书馆应助orange采纳,获得10
6秒前
Yu完成签到,获得积分10
6秒前
221发布了新的文献求助10
7秒前
znn发布了新的文献求助10
7秒前
7秒前
maq完成签到,获得积分10
7秒前
刚国忠发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
8秒前
霸气的忆丹完成签到,获得积分10
8秒前
韩麒嘉发布了新的文献求助10
8秒前
8秒前
8秒前
bingyv发布了新的文献求助10
9秒前
9秒前
反之完成签到,获得积分10
9秒前
小圆不圆完成签到,获得积分10
10秒前
ding5完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836