ContractCheck: Checking Ethereum Smart Contracts in Fine-Grained Level

计算机科学 程序设计语言
作者
Xite Wang,Senping Tian,Wei Cui
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (7): 1789-1806 被引量:6
标识
DOI:10.1109/tse.2024.3400294
摘要

The blockchain has been the main computing scenario for smart contracts, and the decentralized infrastructure of the blockchain is effectively implemented in a de-trusted and executable environment. However, vulnerabilities in smart contracts are particularly vulnerable to exploitation by malicious attackers and have always been a key issue in blockchain security. Existing traditional tools are inefficient in detecting vulnerabilities and have a high rate of false positives when detecting contracts. Some neural network methods have improved the detection efficiency, but they are not competent for fine-grained (code line level) vulnerability detection. We proposes the ContractCheck model for detecting contract vulnerabilities based on neural network methods. ContractCheck extracts fine-grained segments from the abstract syntax tree (AST) and function call graph of smart contract source code. Furthermore, the segments are parsed into token flow retaining semantic information as uint, which are used to generate numerical vector sequences that can be trained using neural network methods. We conduct multiple rounds of experiments using a dataset constructed from 36,885 smart contracts and identified the optimal ContractCheck model structure by employing the Fasttext embedding vector algorithm and constructing a composite model using CNN and BiGRU for training the network. Evaluation on other datasets demonstrates that ContractCheck exhibits significant improvement in contract-level detection performance compared to other methods, with an increase of 23.60% in F1 score over the best existing method. Particularly, it achieves fine-grained detection based on neural network methods. The cases provided indicate that ContractCheck can effectively assist developers in accurately locating the presence of vulnerabilities, thereby enhancing the security of Ethereum smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助lex采纳,获得10
刚刚
1秒前
Darius发布了新的文献求助10
2秒前
2秒前
CodeCraft应助现代芷波采纳,获得10
2秒前
2秒前
YH发布了新的文献求助10
3秒前
sdf完成签到,获得积分20
5秒前
无问西东发布了新的文献求助10
5秒前
5秒前
lrz发布了新的文献求助10
5秒前
小芒果完成签到,获得积分10
6秒前
7秒前
瘦瘦彩虹完成签到,获得积分10
7秒前
Chiwen发布了新的文献求助10
7秒前
谦让寄容发布了新的文献求助10
7秒前
Painkiller_发布了新的文献求助10
7秒前
Gamera完成签到 ,获得积分10
10秒前
10秒前
核桃发布了新的文献求助10
11秒前
Zuguo发布了新的文献求助10
11秒前
无问西东完成签到,获得积分10
12秒前
老张水泥建材完成签到,获得积分10
13秒前
芊芊完成签到 ,获得积分10
13秒前
14秒前
jdp完成签到,获得积分10
14秒前
17秒前
sdf发布了新的文献求助10
18秒前
19秒前
啊印发布了新的文献求助10
22秒前
liu发布了新的文献求助10
22秒前
复杂斓发布了新的文献求助10
23秒前
左手树完成签到,获得积分10
24秒前
风趣雪卉完成签到 ,获得积分10
24秒前
Lucas应助Painkiller_采纳,获得10
24秒前
NN完成签到 ,获得积分10
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648