ContractCheck: Checking Ethereum Smart Contracts in Fine-Grained Level

计算机科学 程序设计语言
作者
Xite Wang,Senping Tian,Wei Cui
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (7): 1789-1806 被引量:6
标识
DOI:10.1109/tse.2024.3400294
摘要

The blockchain has been the main computing scenario for smart contracts, and the decentralized infrastructure of the blockchain is effectively implemented in a de-trusted and executable environment. However, vulnerabilities in smart contracts are particularly vulnerable to exploitation by malicious attackers and have always been a key issue in blockchain security. Existing traditional tools are inefficient in detecting vulnerabilities and have a high rate of false positives when detecting contracts. Some neural network methods have improved the detection efficiency, but they are not competent for fine-grained (code line level) vulnerability detection. We proposes the ContractCheck model for detecting contract vulnerabilities based on neural network methods. ContractCheck extracts fine-grained segments from the abstract syntax tree (AST) and function call graph of smart contract source code. Furthermore, the segments are parsed into token flow retaining semantic information as uint, which are used to generate numerical vector sequences that can be trained using neural network methods. We conduct multiple rounds of experiments using a dataset constructed from 36,885 smart contracts and identified the optimal ContractCheck model structure by employing the Fasttext embedding vector algorithm and constructing a composite model using CNN and BiGRU for training the network. Evaluation on other datasets demonstrates that ContractCheck exhibits significant improvement in contract-level detection performance compared to other methods, with an increase of 23.60% in F1 score over the best existing method. Particularly, it achieves fine-grained detection based on neural network methods. The cases provided indicate that ContractCheck can effectively assist developers in accurately locating the presence of vulnerabilities, thereby enhancing the security of Ethereum smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
怜熙完成签到,获得积分10
1秒前
安生发布了新的文献求助10
2秒前
changping应助腾飞采纳,获得10
3秒前
breeze完成签到,获得积分10
3秒前
4秒前
瘦瘦绿旋发布了新的文献求助10
5秒前
十一月完成签到,获得积分10
6秒前
小虾米完成签到,获得积分10
7秒前
masterwjc完成签到,获得积分10
7秒前
8秒前
瘦瘦寄风完成签到,获得积分10
9秒前
fei菲飞发布了新的文献求助10
10秒前
yunxiao完成签到 ,获得积分10
10秒前
Criminology34应助科研通管家采纳,获得10
11秒前
wwz应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得50
11秒前
思源应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
wang应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
tleeny发布了新的文献求助10
12秒前
fyattojsk应助科研通管家采纳,获得20
12秒前
wwz应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304943
求助须知:如何正确求助?哪些是违规求助? 4451126
关于积分的说明 13851149
捐赠科研通 4338459
什么是DOI,文献DOI怎么找? 2381900
邀请新用户注册赠送积分活动 1377021
关于科研通互助平台的介绍 1344418