ContractCheck: Checking Ethereum Smart Contracts in Fine-Grained Level

计算机科学 程序设计语言
作者
Xite Wang,Senping Tian,Wei Cui
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (7): 1789-1806 被引量:6
标识
DOI:10.1109/tse.2024.3400294
摘要

The blockchain has been the main computing scenario for smart contracts, and the decentralized infrastructure of the blockchain is effectively implemented in a de-trusted and executable environment. However, vulnerabilities in smart contracts are particularly vulnerable to exploitation by malicious attackers and have always been a key issue in blockchain security. Existing traditional tools are inefficient in detecting vulnerabilities and have a high rate of false positives when detecting contracts. Some neural network methods have improved the detection efficiency, but they are not competent for fine-grained (code line level) vulnerability detection. We proposes the ContractCheck model for detecting contract vulnerabilities based on neural network methods. ContractCheck extracts fine-grained segments from the abstract syntax tree (AST) and function call graph of smart contract source code. Furthermore, the segments are parsed into token flow retaining semantic information as uint, which are used to generate numerical vector sequences that can be trained using neural network methods. We conduct multiple rounds of experiments using a dataset constructed from 36,885 smart contracts and identified the optimal ContractCheck model structure by employing the Fasttext embedding vector algorithm and constructing a composite model using CNN and BiGRU for training the network. Evaluation on other datasets demonstrates that ContractCheck exhibits significant improvement in contract-level detection performance compared to other methods, with an increase of 23.60% in F1 score over the best existing method. Particularly, it achieves fine-grained detection based on neural network methods. The cases provided indicate that ContractCheck can effectively assist developers in accurately locating the presence of vulnerabilities, thereby enhancing the security of Ethereum smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助无限的绿兰采纳,获得10
1秒前
1秒前
小马甲应助zxw采纳,获得10
1秒前
FashionBoy应助wnw采纳,获得10
2秒前
2秒前
复杂的薯片完成签到,获得积分10
3秒前
大模型应助一颗栗子采纳,获得30
3秒前
无题发布了新的文献求助10
3秒前
9521发布了新的文献求助10
3秒前
花开富贵发布了新的文献求助10
4秒前
4秒前
乐乐应助雪落兮赏翩舞采纳,获得10
5秒前
Owen应助给我三篇SCI采纳,获得10
5秒前
大胖发布了新的文献求助10
5秒前
5秒前
YS发布了新的文献求助10
5秒前
合适的听白完成签到,获得积分20
6秒前
学习爱我发布了新的文献求助10
6秒前
科盲TCB完成签到,获得积分10
6秒前
6秒前
糯糯发布了新的文献求助10
7秒前
一两风发布了新的文献求助10
7秒前
zhaoxin完成签到,获得积分10
8秒前
全球少女的梦完成签到,获得积分10
8秒前
李健的小迷弟应助LS采纳,获得10
9秒前
善良书南发布了新的文献求助10
9秒前
黄静发布了新的文献求助30
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Ava应助美丽的靖雁采纳,获得10
12秒前
13秒前
11235应助憨憨采纳,获得10
13秒前
齐婷婷发布了新的文献求助10
14秒前
无奈星月完成签到,获得积分20
15秒前
QQ完成签到,获得积分20
15秒前
15秒前
ZIVON发布了新的文献求助10
15秒前
乐乐应助Liben采纳,获得10
16秒前
Tanyang完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406315
求助须知:如何正确求助?哪些是违规求助? 4524393
关于积分的说明 14097868
捐赠科研通 4438136
什么是DOI,文献DOI怎么找? 2436010
邀请新用户注册赠送积分活动 1428144
关于科研通互助平台的介绍 1406292