ContractCheck: Checking Ethereum Smart Contracts in Fine-Grained Level

计算机科学 程序设计语言
作者
Xite Wang,Senping Tian,Wei Cui
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (7): 1789-1806
标识
DOI:10.1109/tse.2024.3400294
摘要

The blockchain has been the main computing scenario for smart contracts, and the decentralized infrastructure of the blockchain is effectively implemented in a de-trusted and executable environment. However, vulnerabilities in smart contracts are particularly vulnerable to exploitation by malicious attackers and have always been a key issue in blockchain security. Existing traditional tools are inefficient in detecting vulnerabilities and have a high rate of false positives when detecting contracts. Some neural network methods have improved the detection efficiency, but they are not competent for fine-grained (code line level) vulnerability detection. We proposes the ContractCheck model for detecting contract vulnerabilities based on neural network methods. ContractCheck extracts fine-grained segments from the abstract syntax tree (AST) and function call graph of smart contract source code. Furthermore, the segments are parsed into token flow retaining semantic information as uint, which are used to generate numerical vector sequences that can be trained using neural network methods. We conduct multiple rounds of experiments using a dataset constructed from 36,885 smart contracts and identified the optimal ContractCheck model structure by employing the Fasttext embedding vector algorithm and constructing a composite model using CNN and BiGRU for training the network. Evaluation on other datasets demonstrates that ContractCheck exhibits significant improvement in contract-level detection performance compared to other methods, with an increase of 23.60% in F1 score over the best existing method. Particularly, it achieves fine-grained detection based on neural network methods. The cases provided indicate that ContractCheck can effectively assist developers in accurately locating the presence of vulnerabilities, thereby enhancing the security of Ethereum smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
娟娟加油完成签到 ,获得积分10
1秒前
一一应助18922406869采纳,获得10
1秒前
lqg发布了新的文献求助10
2秒前
高兴的谷菱完成签到,获得积分20
2秒前
111111发布了新的文献求助10
3秒前
bkagyin应助快乐科研采纳,获得10
3秒前
认真路人发布了新的文献求助10
3秒前
Akim应助谷雨采纳,获得10
4秒前
heija完成签到,获得积分10
5秒前
5秒前
lvsehx发布了新的文献求助10
6秒前
6秒前
Singularity举报GEeZiii求助涉嫌违规
6秒前
6秒前
7秒前
7秒前
完美世界应助liulei采纳,获得10
7秒前
手术刀完成签到 ,获得积分10
7秒前
asXw完成签到,获得积分10
8秒前
wanci应助花花采纳,获得10
8秒前
莱茵河畔发布了新的文献求助50
12秒前
12秒前
华仔应助陪你去流浪采纳,获得10
12秒前
13秒前
激动的白羊完成签到,获得积分10
14秒前
15秒前
15秒前
夹子方糖发布了新的文献求助20
15秒前
16秒前
梦初醒处完成签到,获得积分10
17秒前
李昀睿发布了新的文献求助10
17秒前
lqg完成签到,获得积分20
18秒前
谷雨发布了新的文献求助10
19秒前
单身的钧发布了新的文献求助10
19秒前
玲KYT呢发布了新的文献求助10
20秒前
liulei发布了新的文献求助10
20秒前
20秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Academia de Coimbra: 1537-1990: história, praxe, boémia e estudo, partidas e piadas, organismos académicos 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120530
求助须知:如何正确求助?哪些是违规求助? 2771150
关于积分的说明 7706625
捐赠科研通 2426370
什么是DOI,文献DOI怎么找? 1288511
科研通“疑难数据库(出版商)”最低求助积分说明 621036
版权声明 600069