ContractCheck: Checking Ethereum Smart Contracts in Fine-Grained Level

计算机科学 程序设计语言
作者
Xite Wang,Senping Tian,Wei Cui
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (7): 1789-1806 被引量:1
标识
DOI:10.1109/tse.2024.3400294
摘要

The blockchain has been the main computing scenario for smart contracts, and the decentralized infrastructure of the blockchain is effectively implemented in a de-trusted and executable environment. However, vulnerabilities in smart contracts are particularly vulnerable to exploitation by malicious attackers and have always been a key issue in blockchain security. Existing traditional tools are inefficient in detecting vulnerabilities and have a high rate of false positives when detecting contracts. Some neural network methods have improved the detection efficiency, but they are not competent for fine-grained (code line level) vulnerability detection. We proposes the ContractCheck model for detecting contract vulnerabilities based on neural network methods. ContractCheck extracts fine-grained segments from the abstract syntax tree (AST) and function call graph of smart contract source code. Furthermore, the segments are parsed into token flow retaining semantic information as uint, which are used to generate numerical vector sequences that can be trained using neural network methods. We conduct multiple rounds of experiments using a dataset constructed from 36,885 smart contracts and identified the optimal ContractCheck model structure by employing the Fasttext embedding vector algorithm and constructing a composite model using CNN and BiGRU for training the network. Evaluation on other datasets demonstrates that ContractCheck exhibits significant improvement in contract-level detection performance compared to other methods, with an increase of 23.60% in F1 score over the best existing method. Particularly, it achieves fine-grained detection based on neural network methods. The cases provided indicate that ContractCheck can effectively assist developers in accurately locating the presence of vulnerabilities, thereby enhancing the security of Ethereum smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33发布了新的文献求助10
刚刚
1秒前
1秒前
彭于晏应助阿白采纳,获得10
2秒前
2秒前
优美鱼发布了新的文献求助10
2秒前
人参完成签到,获得积分10
3秒前
3秒前
从容的雨灵完成签到,获得积分10
3秒前
留胡子的立辉完成签到,获得积分10
4秒前
wzx完成签到,获得积分10
5秒前
起风了发布了新的文献求助10
5秒前
LZM完成签到,获得积分10
6秒前
6秒前
赘婿应助xwz采纳,获得10
6秒前
6秒前
人参发布了新的文献求助10
6秒前
7秒前
8秒前
123完成签到 ,获得积分10
9秒前
sure发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
wzx发布了新的文献求助10
12秒前
和谐的小懒猪完成签到 ,获得积分10
12秒前
13秒前
老实莫言发布了新的文献求助30
14秒前
研友_VZG7GZ应助秀丽笑容采纳,获得10
14秒前
15秒前
wendinfgmei发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助艾登登采纳,获得10
16秒前
一诺相许完成签到 ,获得积分10
17秒前
xwz发布了新的文献求助10
17秒前
斯文败类应助虚拟的惜筠采纳,获得10
19秒前
科目三应助人参采纳,获得10
19秒前
科研通AI2S应助不敢装睡采纳,获得10
20秒前
安详的冬瓜完成签到,获得积分10
21秒前
xwz完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783