亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ContractCheck: Checking Ethereum Smart Contracts in Fine-Grained Level

计算机科学 程序设计语言
作者
Xite Wang,Senping Tian,Wei Cui
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (7): 1789-1806 被引量:1
标识
DOI:10.1109/tse.2024.3400294
摘要

The blockchain has been the main computing scenario for smart contracts, and the decentralized infrastructure of the blockchain is effectively implemented in a de-trusted and executable environment. However, vulnerabilities in smart contracts are particularly vulnerable to exploitation by malicious attackers and have always been a key issue in blockchain security. Existing traditional tools are inefficient in detecting vulnerabilities and have a high rate of false positives when detecting contracts. Some neural network methods have improved the detection efficiency, but they are not competent for fine-grained (code line level) vulnerability detection. We proposes the ContractCheck model for detecting contract vulnerabilities based on neural network methods. ContractCheck extracts fine-grained segments from the abstract syntax tree (AST) and function call graph of smart contract source code. Furthermore, the segments are parsed into token flow retaining semantic information as uint, which are used to generate numerical vector sequences that can be trained using neural network methods. We conduct multiple rounds of experiments using a dataset constructed from 36,885 smart contracts and identified the optimal ContractCheck model structure by employing the Fasttext embedding vector algorithm and constructing a composite model using CNN and BiGRU for training the network. Evaluation on other datasets demonstrates that ContractCheck exhibits significant improvement in contract-level detection performance compared to other methods, with an increase of 23.60% in F1 score over the best existing method. Particularly, it achieves fine-grained detection based on neural network methods. The cases provided indicate that ContractCheck can effectively assist developers in accurately locating the presence of vulnerabilities, thereby enhancing the security of Ethereum smart contracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰大海应助豆沙包采纳,获得10
4秒前
天天快乐应助Sinner采纳,获得10
15秒前
FashionBoy应助柔弱的不二采纳,获得10
18秒前
云霞完成签到 ,获得积分10
19秒前
25秒前
Sinner发布了新的文献求助10
29秒前
33秒前
初见发布了新的文献求助10
38秒前
39秒前
1分钟前
淀粉发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
ss25发布了新的文献求助30
1分钟前
木子青完成签到,获得积分20
1分钟前
2分钟前
豆沙包关注了科研通微信公众号
2分钟前
我是老大应助柔弱的不二采纳,获得10
2分钟前
木子青给木子青的求助进行了留言
2分钟前
2分钟前
2分钟前
2分钟前
豆沙包发布了新的文献求助10
2分钟前
2分钟前
Rabbit发布了新的文献求助10
2分钟前
3分钟前
qsq完成签到 ,获得积分10
3分钟前
柔弱的不二完成签到,获得积分10
3分钟前
3分钟前
粽子完成签到,获得积分10
4分钟前
4分钟前
4分钟前
yshj完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Ava应助学术乞丐采纳,获得10
4分钟前
4分钟前
明亮的代灵完成签到 ,获得积分10
4分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963191
求助须知:如何正确求助?哪些是违规求助? 3509088
关于积分的说明 11145049
捐赠科研通 3242195
什么是DOI,文献DOI怎么找? 1791789
邀请新用户注册赠送积分活动 873162
科研通“疑难数据库(出版商)”最低求助积分说明 803634