亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Convolutional-Transformer based Approach for Dynamic Gesture Recognition of Data Gloves

计算机科学 手势 手势识别 人工智能 特征提取 分类器(UML) 卷积神经网络 模式识别(心理学) 变压器 可穿戴计算机 计算机视觉 有线手套 语音识别 工程类 电压 电气工程 嵌入式系统
作者
Yingzhe Tang,Mingzhang Pan,Hongqi Li,Xinxin Cao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3400361
摘要

Data glove-based dynamic gestures contain rich human motion intentions, which is reliant on the hand body information that comes from multi-individual sensors attached. However, present gesture recognition with such wearable sensor devices tends to depend heavily on the handcrafted features and ignore the critical channel and inter-feature information. To address this problem, a novel convolutional-transformer based recognition architecture termed as the spatial-temporal feature-attention transformer network (STFTnet) is proposed in this study. Specifically, the acquired data from multiple sensors of the data glove are sequentially processed with a spatial-temporal sensor features embedding branch, a transformer encoder block, and the final gesture classifier. A multi-sensor feature attention (MFA) block and an improved depth-separable convolution block of the first branch are developed to effectively extract low-level spatial and local temporal features, while the multi-head self-attention based transformer block further concentrating on capturing the global context information. The gesture classifier is used to achieve the final classification successfully. To evaluate the efficacy of the proposed approach, extensive experiments are conducted on two publicly available datasets of pelvic closed reduction action dataset and UC2017 Hand Gesture Dataset, and one self-built gesture control command dataset. Compared to the other state-of-the-art deep learning-based algorithms, an average accuracy of 95.75%, 100%, 99.72% and recognition time of 10.71ms, 11.92ms, and 11.24ms has been achieved. These results indicate that the proposed network effectively enhances the recognition performance of the dynamic gesture of data gloves, while fulfilling requirements of the further real-time application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的幼南完成签到 ,获得积分10
15秒前
科研通AI6应助灵巧小鸽子采纳,获得10
33秒前
桐桐应助灵巧小鸽子采纳,获得10
33秒前
36秒前
与心书完成签到,获得积分10
40秒前
43秒前
科研通AI6应助与心书采纳,获得10
44秒前
50秒前
54秒前
ruilong完成签到,获得积分10
55秒前
56秒前
波波完成签到 ,获得积分10
59秒前
洪武完成签到,获得积分10
59秒前
eden发布了新的文献求助10
1分钟前
牛肉面完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zhaimen完成签到 ,获得积分10
1分钟前
兜里没糖了完成签到 ,获得积分0
1分钟前
潘道士完成签到 ,获得积分10
1分钟前
噜啦啦完成签到 ,获得积分10
1分钟前
JamesPei应助核桃采纳,获得10
1分钟前
FashionBoy应助核桃采纳,获得30
1分钟前
共享精神应助核桃采纳,获得10
1分钟前
科研通AI6应助核桃采纳,获得10
1分钟前
领导范儿应助核桃采纳,获得10
1分钟前
小二郎应助核桃采纳,获得10
1分钟前
所所应助核桃采纳,获得10
1分钟前
李健的小迷弟应助核桃采纳,获得10
1分钟前
大模型应助核桃采纳,获得10
1分钟前
充电宝应助核桃采纳,获得10
1分钟前
1分钟前
善学以致用应助核桃采纳,获得10
1分钟前
完美世界应助核桃采纳,获得30
1分钟前
xiaolei001应助核桃采纳,获得10
1分钟前
FashionBoy应助核桃采纳,获得30
1分钟前
李健的小迷弟应助核桃采纳,获得50
1分钟前
wanci应助核桃采纳,获得30
1分钟前
天天快乐应助核桃采纳,获得30
1分钟前
Jasper应助核桃采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973594
求助须知:如何正确求助?哪些是违规求助? 4229109
关于积分的说明 13172039
捐赠科研通 4017849
什么是DOI,文献DOI怎么找? 2198553
邀请新用户注册赠送积分活动 1211230
关于科研通互助平台的介绍 1126183