A Convolutional-Transformer based Approach for Dynamic Gesture Recognition of Data Gloves

计算机科学 手势 手势识别 人工智能 特征提取 分类器(UML) 卷积神经网络 模式识别(心理学) 变压器 可穿戴计算机 计算机视觉 有线手套 语音识别 工程类 嵌入式系统 电气工程 电压
作者
Yingzhe Tang,Mingzhang Pan,Hongqi Li,Xinxin Cao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3400361
摘要

Data glove-based dynamic gestures contain rich human motion intentions, which is reliant on the hand body information that comes from multi-individual sensors attached. However, present gesture recognition with such wearable sensor devices tends to depend heavily on the handcrafted features and ignore the critical channel and inter-feature information. To address this problem, a novel convolutional-transformer based recognition architecture termed as the spatial-temporal feature-attention transformer network (STFTnet) is proposed in this study. Specifically, the acquired data from multiple sensors of the data glove are sequentially processed with a spatial-temporal sensor features embedding branch, a transformer encoder block, and the final gesture classifier. A multi-sensor feature attention (MFA) block and an improved depth-separable convolution block of the first branch are developed to effectively extract low-level spatial and local temporal features, while the multi-head self-attention based transformer block further concentrating on capturing the global context information. The gesture classifier is used to achieve the final classification successfully. To evaluate the efficacy of the proposed approach, extensive experiments are conducted on two publicly available datasets of pelvic closed reduction action dataset and UC2017 Hand Gesture Dataset, and one self-built gesture control command dataset. Compared to the other state-of-the-art deep learning-based algorithms, an average accuracy of 95.75%, 100%, 99.72% and recognition time of 10.71ms, 11.92ms, and 11.24ms has been achieved. These results indicate that the proposed network effectively enhances the recognition performance of the dynamic gesture of data gloves, while fulfilling requirements of the further real-time application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜愫发布了新的文献求助10
刚刚
萌萌完成签到,获得积分10
1秒前
研友_X89o6n完成签到,获得积分10
3秒前
Ther发布了新的文献求助10
5秒前
哈哈哈完成签到,获得积分10
6秒前
8秒前
诚心的初露完成签到,获得积分10
8秒前
lyb完成签到 ,获得积分10
10秒前
风中方盒完成签到,获得积分20
10秒前
布丁圆团完成签到,获得积分10
11秒前
yikeshu完成签到,获得积分10
11秒前
Zoe完成签到 ,获得积分10
12秒前
14秒前
星辰大海应助do0采纳,获得10
15秒前
tt完成签到 ,获得积分10
16秒前
浅辰完成签到,获得积分10
17秒前
大气萤完成签到,获得积分20
18秒前
18秒前
我ppp完成签到 ,获得积分10
18秒前
19秒前
易燃物品完成签到,获得积分10
19秒前
Hello应助Ther采纳,获得10
21秒前
CherylZhao完成签到,获得积分10
22秒前
Galato发布了新的文献求助10
23秒前
颜愫完成签到,获得积分10
23秒前
安详向日葵完成签到 ,获得积分10
24秒前
拼搏的白云完成签到,获得积分10
24秒前
852应助hhh采纳,获得10
24秒前
李白白白完成签到,获得积分10
24秒前
王手完成签到,获得积分10
24秒前
25秒前
一人完成签到,获得积分10
26秒前
do0完成签到,获得积分10
27秒前
yar应助xlz110采纳,获得10
27秒前
NexusExplorer应助落寞凌波采纳,获得10
29秒前
量子星尘发布了新的文献求助10
32秒前
123完成签到 ,获得积分10
32秒前
哈哈呵完成签到,获得积分10
32秒前
32秒前
Rylee完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029