A Convolutional-Transformer based Approach for Dynamic Gesture Recognition of Data Gloves

计算机科学 手势 手势识别 人工智能 特征提取 分类器(UML) 卷积神经网络 模式识别(心理学) 变压器 可穿戴计算机 计算机视觉 有线手套 语音识别 工程类 电压 电气工程 嵌入式系统
作者
Yingzhe Tang,Mingzhang Pan,Hongqi Li,Xinxin Cao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3400361
摘要

Data glove-based dynamic gestures contain rich human motion intentions, which is reliant on the hand body information that comes from multi-individual sensors attached. However, present gesture recognition with such wearable sensor devices tends to depend heavily on the handcrafted features and ignore the critical channel and inter-feature information. To address this problem, a novel convolutional-transformer based recognition architecture termed as the spatial-temporal feature-attention transformer network (STFTnet) is proposed in this study. Specifically, the acquired data from multiple sensors of the data glove are sequentially processed with a spatial-temporal sensor features embedding branch, a transformer encoder block, and the final gesture classifier. A multi-sensor feature attention (MFA) block and an improved depth-separable convolution block of the first branch are developed to effectively extract low-level spatial and local temporal features, while the multi-head self-attention based transformer block further concentrating on capturing the global context information. The gesture classifier is used to achieve the final classification successfully. To evaluate the efficacy of the proposed approach, extensive experiments are conducted on two publicly available datasets of pelvic closed reduction action dataset and UC2017 Hand Gesture Dataset, and one self-built gesture control command dataset. Compared to the other state-of-the-art deep learning-based algorithms, an average accuracy of 95.75%, 100%, 99.72% and recognition time of 10.71ms, 11.92ms, and 11.24ms has been achieved. These results indicate that the proposed network effectively enhances the recognition performance of the dynamic gesture of data gloves, while fulfilling requirements of the further real-time application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏沐完成签到,获得积分20
1秒前
细腻海蓝发布了新的文献求助10
1秒前
2秒前
舒适香露发布了新的文献求助10
2秒前
直率青亦发布了新的文献求助10
2秒前
Jasper应助懒羊羊采纳,获得10
2秒前
宫跃然发布了新的文献求助10
3秒前
李大宝发布了新的文献求助10
3秒前
3秒前
3秒前
繁荣的忆文完成签到,获得积分10
4秒前
qaz123发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
小怪完成签到,获得积分10
6秒前
FashionBoy应助小甑采纳,获得10
6秒前
在水一方应助周游采纳,获得10
6秒前
爆米花应助科研一号采纳,获得10
7秒前
7秒前
7秒前
7秒前
南山无梅落应助chen采纳,获得10
7秒前
嘻嘻完成签到,获得积分10
7秒前
7秒前
7秒前
ldzjiao完成签到 ,获得积分10
8秒前
素直发布了新的文献求助10
8秒前
8秒前
完美世界应助春实秋华采纳,获得10
8秒前
子衿完成签到,获得积分10
8秒前
独孤蚕完成签到,获得积分10
9秒前
10秒前
10秒前
YMAO发布了新的文献求助10
10秒前
sunnyqqz完成签到,获得积分10
10秒前
木子完成签到,获得积分10
11秒前
来日方长发布了新的文献求助10
11秒前
sdniuidifod发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969322
求助须知:如何正确求助?哪些是违规求助? 3514152
关于积分的说明 11172188
捐赠科研通 3249407
什么是DOI,文献DOI怎么找? 1794832
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804781