A Convolutional-Transformer based Approach for Dynamic Gesture Recognition of Data Gloves

计算机科学 手势 手势识别 人工智能 特征提取 分类器(UML) 卷积神经网络 模式识别(心理学) 变压器 可穿戴计算机 计算机视觉 有线手套 语音识别 工程类 嵌入式系统 电气工程 电压
作者
Yingzhe Tang,Mingzhang Pan,Hongqi Li,Xinxin Cao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13
标识
DOI:10.1109/tim.2024.3400361
摘要

Data glove-based dynamic gestures contain rich human motion intentions, which is reliant on the hand body information that comes from multi-individual sensors attached. However, present gesture recognition with such wearable sensor devices tends to depend heavily on the handcrafted features and ignore the critical channel and inter-feature information. To address this problem, a novel convolutional-transformer based recognition architecture termed as the spatial-temporal feature-attention transformer network (STFTnet) is proposed in this study. Specifically, the acquired data from multiple sensors of the data glove are sequentially processed with a spatial-temporal sensor features embedding branch, a transformer encoder block, and the final gesture classifier. A multi-sensor feature attention (MFA) block and an improved depth-separable convolution block of the first branch are developed to effectively extract low-level spatial and local temporal features, while the multi-head self-attention based transformer block further concentrating on capturing the global context information. The gesture classifier is used to achieve the final classification successfully. To evaluate the efficacy of the proposed approach, extensive experiments are conducted on two publicly available datasets of pelvic closed reduction action dataset and UC2017 Hand Gesture Dataset, and one self-built gesture control command dataset. Compared to the other state-of-the-art deep learning-based algorithms, an average accuracy of 95.75%, 100%, 99.72% and recognition time of 10.71ms, 11.92ms, and 11.24ms has been achieved. These results indicate that the proposed network effectively enhances the recognition performance of the dynamic gesture of data gloves, while fulfilling requirements of the further real-time application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
科研小白完成签到,获得积分20
刚刚
Ava应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
蓉蓉完成签到 ,获得积分10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
sunyz应助科研通管家采纳,获得10
1秒前
求助人员应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
学术小白完成签到,获得积分10
3秒前
高大的鸽子完成签到 ,获得积分10
4秒前
7秒前
好运设计完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
温婉的香氛完成签到 ,获得积分10
9秒前
esdese发布了新的文献求助10
14秒前
超越俗尘完成签到,获得积分10
14秒前
明时完成签到,获得积分10
15秒前
CMUSK完成签到,获得积分10
17秒前
小核桃完成签到 ,获得积分10
20秒前
勤恳的嚓茶完成签到,获得积分10
20秒前
22秒前
Freddy完成签到 ,获得积分10
22秒前
LIKUN完成签到,获得积分10
22秒前
BinSir完成签到 ,获得积分10
22秒前
jkaaa完成签到,获得积分10
24秒前
Tin完成签到,获得积分10
27秒前
fawr完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
31秒前
今后应助奥里给医学生采纳,获得10
32秒前
魔幻的妖丽完成签到 ,获得积分0
33秒前
shuan完成签到,获得积分10
37秒前
吴晨曦完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
41秒前
落叶完成签到 ,获得积分0
42秒前
研友_Zrlk7L完成签到,获得积分10
43秒前
丽莫莫完成签到,获得积分10
48秒前
丁丁发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986