Deep-learning potential molecular dynamics simulations of the structural and physical properties of rare-earth metal scandium

分子动力学 稀土 金属 土(古典元素) 材料科学 化学物理 纳米技术 化学 计算化学 物理 冶金 数学物理
作者
Hongtao Xue,Juan Li,Zhen Chang,Yan-Hong Yang,Fuling Tang,Yong Zhang,Junqiang Ren,Xuefeng Lu,Junchen Li
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:242: 113072-113072
标识
DOI:10.1016/j.commatsci.2024.113072
摘要

The deep potential (DP) is a promising deep-learning-based approach to developing the high-accurate potential function of various materials from the data of ab-initio calculations based on density functional theory (DFT). To better understand the structural and physical properties of the rare-earth metal scandium (Sc), performing classical molecular dynamics (MD) simulations should be highly beneficial but has been straitened for lacking of available Sc potential. Therefore, the necessary interatomic potential function of Sc for MD simulations was developed first in this work by using the DP method. By systematically comparing the DP-predicted lattice constants, stable phase, vacancy and self-interstitial formation energies, surface energies, elastic constants and generalised stacking fault energy curves with the corresponding DFT results, we validated that the developed DP model of Sc enables these property-predictions with a reasonable DFT accuracy. Moreover, our DP-based MD simulations shown that the rare-earth Sc can transform from the α-HCP to the β-BCC structure at 1622 K and melt at 1710 K, quite close to the experimental values for the α-β phase transition temperature (1609 K) and the melting-point (1814 K) of Sc. Rising temperature can improve the diffusivity of Sc atoms and the self-diffusion coefficient at the melting-point is 5.7 × 10−12 m2/s, which is on the same order of magnitude as other HCP metals. The results could be used for understanding the fundamental properties of rare-earth metal Sc and as a basis for further developing the Sc-containing binary or multinary DP models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七个小矮人完成签到,获得积分10
刚刚
猪丢了完成签到 ,获得积分10
1秒前
上善若水发布了新的文献求助10
1秒前
2秒前
英俊的铭应助我不困采纳,获得30
2秒前
情怀应助满意采纳,获得10
2秒前
脑洞疼应助欢呼妙彤采纳,获得10
3秒前
霍霍发布了新的文献求助10
4秒前
活力迎天完成签到,获得积分10
4秒前
曾珍完成签到 ,获得积分10
4秒前
4秒前
Dean应助张蓝山采纳,获得50
5秒前
踏实的南琴完成签到 ,获得积分10
5秒前
Lucas应助传统的雨文采纳,获得10
5秒前
6秒前
Xuexi发布了新的文献求助10
7秒前
脑洞疼应助敏感的盼夏采纳,获得10
7秒前
duming完成签到,获得积分10
8秒前
Beatrice完成签到,获得积分10
8秒前
小二郎应助LV采纳,获得10
8秒前
Jabowoo发布了新的文献求助10
8秒前
lwb完成签到,获得积分10
8秒前
JJJJJJ完成签到,获得积分10
9秒前
1111完成签到,获得积分10
9秒前
事已至此已成人喵完成签到,获得积分10
10秒前
忐忑的黑米完成签到,获得积分10
11秒前
五五我发布了新的文献求助10
11秒前
wade完成签到,获得积分20
11秒前
南栀发布了新的文献求助10
11秒前
黄海娜完成签到,获得积分10
11秒前
12秒前
王赤菽完成签到,获得积分10
12秒前
小马甲应助上善若水采纳,获得10
12秒前
13秒前
闪闪千兰发布了新的文献求助10
14秒前
14秒前
leaolf应助RonSmith采纳,获得10
14秒前
14秒前
二号完成签到,获得积分10
15秒前
syy完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477