Deep-learning potential molecular dynamics simulations of the structural and physical properties of rare-earth metal scandium

分子动力学 稀土 金属 土(古典元素) 材料科学 化学物理 纳米技术 化学 计算化学 物理 冶金 数学物理
作者
Hongtao Xue,Juan Li,Zhen Chang,Yan-Hong Yang,Fuling Tang,Yong Zhang,Junqiang Ren,Xuefeng Lu,Junchen Li
出处
期刊:Computational Materials Science [Elsevier]
卷期号:242: 113072-113072
标识
DOI:10.1016/j.commatsci.2024.113072
摘要

The deep potential (DP) is a promising deep-learning-based approach to developing the high-accurate potential function of various materials from the data of ab-initio calculations based on density functional theory (DFT). To better understand the structural and physical properties of the rare-earth metal scandium (Sc), performing classical molecular dynamics (MD) simulations should be highly beneficial but has been straitened for lacking of available Sc potential. Therefore, the necessary interatomic potential function of Sc for MD simulations was developed first in this work by using the DP method. By systematically comparing the DP-predicted lattice constants, stable phase, vacancy and self-interstitial formation energies, surface energies, elastic constants and generalised stacking fault energy curves with the corresponding DFT results, we validated that the developed DP model of Sc enables these property-predictions with a reasonable DFT accuracy. Moreover, our DP-based MD simulations shown that the rare-earth Sc can transform from the α-HCP to the β-BCC structure at 1622 K and melt at 1710 K, quite close to the experimental values for the α-β phase transition temperature (1609 K) and the melting-point (1814 K) of Sc. Rising temperature can improve the diffusivity of Sc atoms and the self-diffusion coefficient at the melting-point is 5.7 × 10−12 m2/s, which is on the same order of magnitude as other HCP metals. The results could be used for understanding the fundamental properties of rare-earth metal Sc and as a basis for further developing the Sc-containing binary or multinary DP models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伞兵龙完成签到,获得积分10
刚刚
刚刚
西安小小朱完成签到,获得积分10
刚刚
刚刚
1秒前
小二郎应助打工人章鱼哥采纳,获得10
1秒前
优雅的琳发布了新的文献求助10
1秒前
Niar完成签到 ,获得积分10
1秒前
1秒前
2秒前
shuimo521发布了新的文献求助10
2秒前
脑洞疼应助眯眯眼的老鼠采纳,获得10
2秒前
所所应助小离采纳,获得10
2秒前
我是老大应助杨天水采纳,获得10
2秒前
woodheart完成签到,获得积分10
3秒前
3秒前
JamesPei应助miaoww采纳,获得10
3秒前
王王完成签到,获得积分10
3秒前
Evelyn完成签到,获得积分10
3秒前
cxt1346完成签到 ,获得积分10
3秒前
bkagyin应助孙一雯采纳,获得30
4秒前
顺心迎南完成签到,获得积分20
4秒前
Emma完成签到,获得积分10
4秒前
CodeCraft应助微笑鹤采纳,获得11
5秒前
5秒前
天青色等烟雨完成签到 ,获得积分10
5秒前
坚强亦丝应助hziyu采纳,获得10
5秒前
tanhaili完成签到 ,获得积分10
5秒前
乐小佳完成签到,获得积分10
5秒前
yyyrrr完成签到,获得积分10
6秒前
6秒前
6秒前
李健应助hu970采纳,获得10
6秒前
JamesPei应助守护星星采纳,获得10
7秒前
kingwill应助科研小民工采纳,获得20
7秒前
8秒前
小胖子发布了新的文献求助10
8秒前
8秒前
思源应助虚幻镜子采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672