Deep-learning potential molecular dynamics simulations of the structural and physical properties of rare-earth metal scandium

分子动力学 稀土 金属 土(古典元素) 材料科学 化学物理 纳米技术 化学 计算化学 物理 冶金 数学物理
作者
Hongtao Xue,Juan Li,Zhen Chang,Yan-Hong Yang,Fuling Tang,Yong Zhang,Junqiang Ren,Xuefeng Lu,Junchen Li
出处
期刊:Computational Materials Science [Elsevier]
卷期号:242: 113072-113072 被引量:3
标识
DOI:10.1016/j.commatsci.2024.113072
摘要

The deep potential (DP) is a promising deep-learning-based approach to developing the high-accurate potential function of various materials from the data of ab-initio calculations based on density functional theory (DFT). To better understand the structural and physical properties of the rare-earth metal scandium (Sc), performing classical molecular dynamics (MD) simulations should be highly beneficial but has been straitened for lacking of available Sc potential. Therefore, the necessary interatomic potential function of Sc for MD simulations was developed first in this work by using the DP method. By systematically comparing the DP-predicted lattice constants, stable phase, vacancy and self-interstitial formation energies, surface energies, elastic constants and generalised stacking fault energy curves with the corresponding DFT results, we validated that the developed DP model of Sc enables these property-predictions with a reasonable DFT accuracy. Moreover, our DP-based MD simulations shown that the rare-earth Sc can transform from the α-HCP to the β-BCC structure at 1622 K and melt at 1710 K, quite close to the experimental values for the α-β phase transition temperature (1609 K) and the melting-point (1814 K) of Sc. Rising temperature can improve the diffusivity of Sc atoms and the self-diffusion coefficient at the melting-point is 5.7 × 10−12 m2/s, which is on the same order of magnitude as other HCP metals. The results could be used for understanding the fundamental properties of rare-earth metal Sc and as a basis for further developing the Sc-containing binary or multinary DP models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕嫣娆完成签到 ,获得积分10
2秒前
3秒前
bb完成签到,获得积分10
3秒前
LeonPan发布了新的文献求助10
3秒前
小二郎应助朝风采纳,获得10
3秒前
3秒前
杨亚轩完成签到,获得积分10
6秒前
zzx完成签到 ,获得积分10
7秒前
标致冰海完成签到 ,获得积分10
7秒前
8秒前
路宝发布了新的文献求助10
8秒前
李爱国应助irisy采纳,获得10
9秒前
12秒前
kk发布了新的文献求助10
12秒前
14秒前
深情安青应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
顺心牛排完成签到,获得积分10
17秒前
愤怒的山兰完成签到,获得积分10
17秒前
shhoing应助TK采纳,获得10
18秒前
Accept发布了新的文献求助10
19秒前
王俊发布了新的文献求助10
19秒前
Akim应助vagabond采纳,获得10
21秒前
juan发布了新的文献求助10
21秒前
WSYang完成签到,获得积分10
22秒前
ZYP发布了新的文献求助10
24秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008