Transforming the Stability, Encapsulation, and Sustained Release Properties of Calcium Alginate Beads through Gel-Confined Coacervation

凝聚 海藻酸钙 封装(网络) 化学 化学工程 海藻酸钠 色谱法 有机化学 计算机网络 计算机科学 工程类
作者
Oluwadamilola I. Egbeyemi,Wesam A. Hatem,Umberto A. Kober,Yakov Lapitsky
出处
期刊:Langmuir [American Chemical Society]
卷期号:40 (23): 11947-11958
标识
DOI:10.1021/acs.langmuir.4c00297
摘要

Calcium alginate (Ca2+/alginate) gel beads find use in diverse applications, ranging from drug delivery and tissue engineering to bioprocessing, food formulation, and agriculture. Unless modified, however, these gels have limited stability in alkaline media (including phosphate buffers), and their high solute permeability limits their ability to efficiently encapsulate and slowly release water-soluble small molecules. Here, we show how these limitations can be addressed by mixing the alginate solutions used in the bead preparation with the nontoxic anionic polymer polyphosphate (PP). Upon complexing Ca2+ ions, PP undergoes complex coacervation (i.e., liquid/liquid phase separation into a Ca2+/PP-rich coacervate phase and a dilute supernatant phase). At lower PP concentrations, the Ca2+/PP coacervate appears to simply remain dispersed within the beads. Though its presence makes the beads more stable in alkaline media (phosphate-buffered saline and seawater), it has little impact on the bead stiffness, morphology, and (at least in the absence of substantial payload/coacervate association) encapsulation and release properties. When the PP concentrations exceed a critical value, however, Ca2+/PP coacervation within the gelling Ca2+/alginate beads collapses the resulting beads into more compact, interpenetrating polymer networks. Besides their enhanced stability to alkaline environments, these hybrid beads exhibit irregular morphologies with wrinkled and dimpled surface structures and macroscopic (closed) internal pores, and their collapse into these polymer-rich networks also makes them significantly stiffer than their PP-free counterparts. Crucially, these beads also exhibit a much lower solute permeability, which enables highly efficient encapsulation and multiday release of water-soluble small molecules (with the beads encapsulating >90% of the added model payload and sustaining its release over 3–5 d). Collectively, these findings provide a mild and simple (single-step) pathway to generating ionically cross-linked alginate beads with significantly enhanced stability, encapsulation efficiency, and sustained release.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔宁宁完成签到 ,获得积分0
2秒前
卓垚完成签到,获得积分10
4秒前
yar完成签到 ,获得积分10
7秒前
nancy应助hannah采纳,获得10
7秒前
碧蓝巧荷完成签到 ,获得积分10
8秒前
QYY完成签到,获得积分10
9秒前
风清扬应助自然白秋采纳,获得20
9秒前
小么完成签到 ,获得积分10
10秒前
美好凡柔完成签到 ,获得积分10
11秒前
进退须臾完成签到,获得积分10
11秒前
zyshao完成签到,获得积分10
16秒前
TG303完成签到,获得积分10
16秒前
干净盼山完成签到,获得积分10
20秒前
liujinjin完成签到,获得积分10
21秒前
smottom完成签到,获得积分0
21秒前
23秒前
maxyer完成签到,获得积分10
24秒前
rayzhanghl完成签到,获得积分10
25秒前
jintian完成签到 ,获得积分10
27秒前
单纯的醉柳完成签到 ,获得积分10
27秒前
善良的火完成签到 ,获得积分10
28秒前
胡楠完成签到,获得积分10
28秒前
乌云乌云快走开完成签到,获得积分10
29秒前
qqaeao完成签到,获得积分10
29秒前
韭菜盒子完成签到,获得积分20
30秒前
万事屋完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
wdccx完成签到,获得积分10
35秒前
xzy998应助科研通管家采纳,获得10
37秒前
xzy998应助科研通管家采纳,获得10
37秒前
37秒前
活泼的烙完成签到 ,获得积分10
37秒前
娜行完成签到 ,获得积分10
39秒前
Sandy完成签到,获得积分10
42秒前
烂漫的睫毛完成签到 ,获得积分20
43秒前
受伤问凝完成签到 ,获得积分10
43秒前
阿狸完成签到 ,获得积分0
43秒前
钱仙人完成签到,获得积分10
45秒前
高挑的若雁完成签到 ,获得积分10
46秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015