亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cycle-GAN-based synthetic sonar image generation for improved underwater classification

声纳 合成孔径声纳 水下 计算机科学 人工智能 计算机视觉 上下文图像分类 图像(数学) 模式识别(心理学) 地质学 海洋学
作者
Sunmo Koo,Sangpil Youm,Jane Shin
标识
DOI:10.1117/12.3016056
摘要

One of the main challenges in underwater automatic target recognition is in the data scarcity of underwater sonar imagery. This challenge arises especially in data-driven approaches because of the limited training dataset and unknown environmental conditions before the mission. Transfer learning and synthetic data generation have been suggested as effective methods to overcome this challenge. However, the efficiency and effectiveness of synthetic data generation methods have been limited due to the difficulty from implementing complex acoustic imaging processes and data-driven model's poor performance under domain shifts. In this paper, we present a novel approach to address this challenge by utilizing cycle-Generative Adversarial Networks (GAN) to generate synthetic sonar images to enhance the effectiveness of the training data set. Our method simplifies the process of synthetic data generation by leveraging cycle-GAN, which is a deep Convolutional Neural Network (CNN) for image-to-image translation using unpaired dataset. The cycle-GAN based generation model transfers camera images of ship and plane into realistic synthetic sonar images. Then, these generated synthetic images are used to augment the training data set for the classification model. In this work, the effectiveness of this approach is demonstrated through a series of experiments, showing improvements in classification accuracy. One advantage of the proposed approach is in the simplification of the synthetic data generation process while improving classification accuracy. Another advantage is that the ship and plane sonar image generation model is trained solely on seabed sonar images, which are relatively easy to obtain. This approach has the potential to greatly benefit the field of underwater sonar image classification by providing a more efficient solution for addressing data scarcity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
yanghao完成签到,获得积分10
10秒前
基金中中中完成签到,获得积分10
10秒前
13秒前
14秒前
fengyun1990发布了新的文献求助10
16秒前
斯文败类应助yuanyuan采纳,获得10
16秒前
16秒前
余闻问发布了新的文献求助10
18秒前
无花果应助wtl采纳,获得10
19秒前
单薄绿竹完成签到,获得积分10
21秒前
余闻问完成签到,获得积分10
23秒前
27秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
30秒前
K先生完成签到 ,获得积分10
30秒前
光亮的安双完成签到,获得积分10
32秒前
39秒前
脑洞疼应助fengyun1990采纳,获得10
41秒前
白奕发布了新的文献求助10
45秒前
Willow完成签到,获得积分10
45秒前
46秒前
在水一方应助白奕采纳,获得30
50秒前
yuanyuan发布了新的文献求助10
51秒前
腼腆钵钵鸡完成签到 ,获得积分10
56秒前
程淑弟发布了新的文献求助10
1分钟前
xiawanren00完成签到,获得积分10
1分钟前
在水一方应助yuanyuan采纳,获得10
1分钟前
山川日月完成签到,获得积分10
1分钟前
FashionBoy应助追风采纳,获得10
1分钟前
1分钟前
黙宇循光完成签到 ,获得积分10
1分钟前
dj发布了新的文献求助20
1分钟前
king完成签到 ,获得积分10
1分钟前
上官若男应助程淑弟采纳,获得10
1分钟前
1分钟前
1分钟前
平淡如天完成签到,获得积分10
1分钟前
ayayaya完成签到 ,获得积分10
1分钟前
1分钟前
肉肉完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898