Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation

介电谱 稳健性(进化) 质子交换膜燃料电池 电阻抗 材料科学 电化学 燃料电池 核工程 分析化学(期刊) 计算机科学 汽车工程 化学工程 电气工程 化学 工程类 色谱法 电极 基因 生物化学 物理化学
作者
Dan Yu,Xingjun Li,Samuel Simon Araya,Simon Lennart Sahlin,Vincenzo Liso
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:96: 544-558 被引量:1
标识
DOI:10.1016/j.jechem.2024.05.014
摘要

Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy; (2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults; (3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation; (2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aiden完成签到,获得积分10
1秒前
所所应助心灵美的南晴采纳,获得10
1秒前
2秒前
qoq发布了新的文献求助10
2秒前
iVANPENNY应助文献直达采纳,获得10
3秒前
杉杉来吃完成签到,获得积分10
3秒前
chenchenchen发布了新的文献求助10
4秒前
花花发布了新的文献求助10
4秒前
4秒前
充电宝应助超帅十三采纳,获得10
6秒前
6秒前
sunrase完成签到,获得积分10
7秒前
丘比特应助纯真采蓝采纳,获得10
8秒前
SaturnY完成签到,获得积分10
8秒前
周三完成签到,获得积分10
8秒前
马季关注了科研通微信公众号
9秒前
10秒前
Eric_HU完成签到,获得积分10
10秒前
领导范儿应助无情的宛儿采纳,获得10
12秒前
avalon完成签到,获得积分10
12秒前
13秒前
Lee完成签到,获得积分10
13秒前
13秒前
小二郎应助100采纳,获得10
14秒前
15秒前
yzthk完成签到 ,获得积分10
15秒前
Alin完成签到,获得积分10
15秒前
超帅十三完成签到,获得积分20
15秒前
舒心的画板完成签到,获得积分10
15秒前
15秒前
炙热谷雪发布了新的文献求助10
16秒前
18秒前
cocolu应助燕海雪采纳,获得10
18秒前
超帅十三发布了新的文献求助10
19秒前
Alin发布了新的文献求助10
19秒前
酷波er应助皮不可采纳,获得10
20秒前
24K纯帅发布了新的文献求助10
21秒前
lallalal完成签到,获得积分10
21秒前
chenchenchen发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217